
The Kogut Programming Language Reference

October 22, 2011
(incomplete yet)

Contents
1 Overview and Terminology 5

1.1 Execution . 5
1.2 Types . 5
1.3 Supertype ordering . 6
1.4 Mutability . 6
1.5 Object identity . 6
1.6 Threads . 7
1.7 Syntax basics . 7
1.8 References . 8
1.9 Functions . 8
1.10 Scoping . 9
1.11 Object fields . 9
1.12 Syntax . 10

2 Lexical Syntax 10

3 Abstract Grammar 14

4 Concrete Grammar 14
4.1 Expressions . 14

4.1.1 References . 14
4.1.2 Application . 18
4.1.3 Literals . 18
4.1.4 Lists . 19
4.1.5 Local definitions . 19
4.1.6 Unnamed functions . 19
4.1.7 Operators which denote function application 20
4.1.8 Conditionals . 20
4.1.9 Case selection . 21
4.1.10 Loop . 21
4.1.11 Local rebinding . 22
4.1.12 Exception catching . 22
4.1.13 Signal handling . 23
4.1.14 Unnamed structures 24

1

4.2 Patterns . 24
4.2.1 Pattern lists . 24
4.2.2 References . 24
4.2.3 Visibility . 24
4.2.4 Predicates . 25
4.2.5 Sequencing several matches 25
4.2.6 Checking types . 25
4.2.7 Extracting components of compound values 25
4.2.8 Alternative matches 26

4.3 Definitions . 26
4.3.1 Assignment . 26
4.3.2 Statements . 26
4.3.3 References . 26
4.3.4 Named functions . 27
4.3.5 Methods . 28
4.3.6 Types . 29
4.3.7 Visibility . 31

5 Prelude 31
5.1 Null . 32
5.2 Booleans . 32
5.3 Equality . 32
5.4 Hashing . 33
5.5 Ordering . 33
5.6 Freeing resources . 34
5.7 Simple functions . 35
5.8 Registered lists . 35
5.9 Exceptions . 35

5.9.1 Program errors . 36
5.9.2 External errors . 39
5.9.3 Resource errors . 40
5.9.4 Exits . 40

5.10 Exiting the program . 41
5.11 Numbers . 42

5.11.1 Abstract types . 42
5.11.2 Integers . 42
5.11.3 Rationals . 49
5.11.4 Infinities . 54
5.11.5 Floats . 58

5.12 Characters . 63
5.13 Pairs . 63

2

5.14 Symbols . 64
5.15 Types . 64
5.16 Mutable Variables . 66
5.17 Dynamic variables . 66
5.18 Lazy variables . 67
5.19 Forward variables . 67
5.20 Functions . 67
5.21 Singletons . 68
5.22 Records . 68
5.23 Modules . 69
5.24 Keywords . 69
5.25 Time . 69
5.26 Signals . 70
5.27 Bracketing resource usage . 71
5.28 Mutexes . 73
5.29 Materialized object identity 74
5.30 Weak references . 74
5.31 Lost threads . 75
5.32 Collections . 76

5.32.1 Iteration . 76
5.32.2 Lists . 77
5.32.3 Generators . 79
5.32.4 First and last element 82
5.32.5 Strings . 87

5.33 Showing data as strings . 87
5.34 I/O streams . 88
5.35 Serialization . 88

6 Threads 88
6.1 Exceptions related to threads 88
6.2 Starting threads . 88
6.3 Conditions . 89
6.4 Waiting for threads . 89
6.5 Yielding the processor . 90
6.6 Sleeping forever . 90
6.7 Sending signals . 90
6.8 System signals . 90
6.9 Action signals . 91
6.10 Boxes . 91
6.11 Queues . 92
6.12 Event queues . 92

3

6.13 Finalizers . 93
6.14 Kicking weakly alive threads 95
6.15 Explicit garbage collection . 95
6.16 Exiting a program with several threads 95
6.17 Running code with a time limit 95

7 Calendar 95

4

1 Overview and Terminology
A claim qualified with “by convention” is intended to be true, but its truth ul-
timately depends on all parts of the program complying with the convention,
so formally it is guaranteed to be true only for standard types.

An operation qualified with “a hint” may influence performance or other
informal properties of the program, but does not have an observable effect
that a programmer should rely on.

1.1 Execution
Execution of Kogut code manipulates objects. A value is a pointer to an
object.

When execution completes, it either succeeds, or fails with an exception
which is a value. Unless specified otherwise, when execution of some syntactic
form includes execution of its parts, as soon as one of the parts fails, the whole
form fails as well with the same exception.

A static error is an error which is detected at compile time and which
makes code invalid. Errors detected when code is executed are called dynamic
errors and are reported with exceptions.

1.2 Types
Every object is classified by its direct type. Kogut is dynamically typed,
which means that the direct type of the value of an expression is generally
not known statically.

A type name used as a generic noun means an object of that type. For
example an int means an object of type INT.

A type is associated with a list of its direct supertypes. A supertype of a
type is the type itself or its proper supertype. A proper supertype of a type is
a supertype of its direct supertype or OBJECT. An object has type T when
T is a supertype of the direct type of the object.

T1 is called a subtype of T2 when T2 is a supertype of T1.
The direct type of an object never changes. New subtype relationships

between existing types may be declared during execution of the program, but
they cannot be removed.

An abstract type is a type which is not a direct type of any object (and
there is no way to create objects of that type).

A final type is a type which may not have any further subtypes declared.
A concrete type is a final type with no proper subtypes.

5

A concrete type T is a singleton type when there is a single object having
type T (and there is no way to create other such objects).

The constructor of a type T is a function which returns an object of type
T and which is the only way to create objects of type T .

1.3 Supertype ordering
The set of supertypes of a type T is ordered, forming its supertype list. The
order, as described in [BCH+96], is computed as follows.

Partial orders are gathered:
• For each direct supertype of T , its supertype list, computed recursively

by this algorithm.

• The list of direct supertypes of T , with OBJECT added at the end.
The first element of the supertype list of T is T itself. Then, as long as

any partial orders remain, the first element of each partial order in turn is
examined, searching for a type which does not appear as a nonfirst element of
any partial order. If there is no such type, computing the supertype list fails,
and the supertype hierarchy is said to be inconsistent (this happens when
two supertypes of T yield conflicting orders of some further supertypes).
Otherwise the first type found becomes the next element of the supertype
list being built, it gets removed from all partial orders which contain it (this
is always the first element), partial orders which became empty are discarded,
and building the list continues.

1.4 Mutability
A mutable object is an object which directly contains state which can change
during the lifetime of the object. The opposite is called immutable. An
immutable object can still refer to other mutable objects.

This is not a formal property of an object, because whether given state is
considered a part of the given object, or a part of one of its subobjects, is an
aspect of the presentation which is not directly observable by the program.
It is a useful characterization though, under a specific assuption about which
subobjects are exposed and which are considered implementation details of
other objects.

1.5 Object identity
Objects have identity, which means that it is meaningful to ask whether
two values refer to the same object; this relation is called physical equality.

6

Object identity is the invisible property of any object which allows to decide
that. A newly created object is distinguishable from all previously existing
objects by having a unique identity.

For many immutable types of objects however, like numbers, lists, or
strings, the identity of objects used to represent them is mostly irrelevant
(except in rare circumstances like serialization, where checking object identity
and maintaining object sharing is essential for avoiding a possible exponential
explosion of the object graph size). Generally it does not matter whether two
lists were created independently or it is really a single list referred to from
two places; it only matters whether they have the same elements. Types of
objects with mostly irrelevant identity are called value types, as opposed to
object types whose objects have a meaningful and useful identity.

All mutable objects necessarily have object types, because the conse-
quences of mutation depend on the amount of object sharing. Some im-
mutable objects have object types too however, which means that there is
a guarantee that a given value is represented by a unique object. This is
especially true for singleton types.

1.6 Threads
Program execution consists of concurrently executing threads. A thread may
be active or completed. A completed thread either succeeded or failed exe-
cuting its body. An active thread is either running, or waiting for an event
which can be triggered by another thread or is external to the program.

1.7 Syntax basics
The fundamental syntactic forms are expressions, patterns, and definitions.

An expression denotes a computation which evaluates to a value, if it
succeeds.

A pattern denotes a computation which examines a value called the subject
being matched, and either accepts it or rejects, if it succeeds. An accepting
pattern may bind some names in the context where the pattern is used.

Unless specified otherwise, when matching against a pattern includes
matching against its subpatterns, as soon as one of the submatches rejects
its subject, the whole match rejects its subject as well. Names bound by the
subpatterns are visible in the code executed after the submatch, and become
bound by the whole pattern if it eventually accepts its subject.

A definition denotes a computation which may bind some names.
A statement is a definition formed by an expression. It evaluates the

expression and ignores its result; it does not bind any names.

7

An important case of an expression is an application of a value to a list of
values. Consequences of an application depend on the nature of the object
being applied.

To enter a subexpression means to evaluate it and return its value as
the value of the whole expression. To tail-call an object with some values
as arguments means to enter the application of the object to the arguments.
It is expected that the memory which has been implicitly allocated for the
caller’s execution state (a stack frame) is dealloated before evaluation of
the subexpression being entered. Such subexpression is said to be in a tail
position with respect to the whole expression.

To enter a sequence of definitions means to evaluate them in order, bind-
ing in the current scope names they introduce. If the last definition is a
statement, the expression which forms it is entered instead of being merely
executed, otherwise Null is returned.

Unless specified otherwise, when a form needs values of some of its sub-
forms which are interpreted as expressions, they are evaluated left to right.

1.8 References
Names are bound to references, which are objects which support operations
like getting and setting their value. The set of supported operations and
their interpretation depends on the type of the reference.

The most fundamental type of a reference is a constant. Getting the value
of a constant always returns the same value, and setting it is not supported.

For the brevity of presentation, to bind a name to something other than
a reference means to bind it to a constant with the given value.

Mutable variables support getting and setting the value. Getting the value
returns the most recently set value, or the initial value if the variable has not
been set yet.

Dynamic variables are associated with cells, where a cell behaves like a
mutable variable. Getting or setting the value of a dynamic variable gets
or sets the value of its current cell. Which cell is current depends on what
code accesses the variable. Dynamic variables support local rebinding, which
creates a new cell and makes it current only for the given code. The dynamic
environment of a place is the set of cells which are current for the place.

1.9 Functions
Function definitions and function expressions produce functions. When a
function is applied, it matches arguments against its parameter patterns and
enters definitions in its body.

8

An ordinary function has a single definition. A generic function is imple-
mented separately for different combinations of argument types.

Technically, a function definition consists of several cases, selected by
matching arguments against separate sequences of parameter patterns. Reg-
ular cases specify the behavior of the function directly. A generic case uses
some of the parameters, called the keys, to find the actual method, which is
a specialization of the original function to particular argument types. The
arity of a generic case is either a fixed number of parameters or the lower
bound of the number of parameters. A generic function is a function which
has at least one generic case.

When T1, . . . , Tn are the types of the keys, a method defined for T ′
1, . . . , T

′
n

is applicable if every T ′
i is a supertype of Ti. If there is no applicable method,

the dispatch fails with ‘NoMethod function arity arguments’, where function is
the symbol of the generic function, a negative arity encodes the arity being
at least −1−arity. and arguments is the list of key arguments. Otherwise the
best applicable method is tail-called with the same arguments as the original
function. A method defined for T ′

1, . . . , T
′
n is better than a method defined

for T ′′
1 , . . . , T

′′
n if the first T ′

i after their common prefix comes earlier than T ′′
i

in the supertype list of Ti.

1.10 Scoping
Several kinds of forms introduce scopes associated with some of their sub-
forms. A scope is a region of code where names can be defined.

Statically, a name can be referred to from any place within its scope,
except where it is shadowed by a definition of the same name in some inner
scope.

Dynamically, a reference can be used only after its definition has been ex-
ecuted, otherwise trying to access the reference fails with ‘NotDefined name’,
where name is the symbol of the reference. This implies that a function may
refer to references defined below, as long as the function is not applied before
these definitions are executed.

Bound names can be marked as public or private. This classification is
used by some constructs which introduce scopes. The default is public unless
specified otherwise.

1.11 Object fields
Some objects include fields, which are references defined in the scope of the
object, accessible from the outside of the object if they are public.

9

(re) same as re (grouping)
re1 re2 re1 followed by re2
re1 | re2 re1 or re2

re∗ zero or more occurrences of re
re+ one or more occurrences of re
re? zero or one occurrence of re
“a” this string

U+xxxx this character, given by Unicode code point
“a” . . . “z” a character from the range of code points

‹Cat› a character with Unicode category Cat
untilre any fragment which does not include a match for re

Table 1: Notation of lexical rules

Applying an object with fields to a symbol and some arguments, tail-calls
its reference named by the symbol to the other arguments. If there is no field
with the given name, the application fails with ‘NoField object field’.

Unless specified otherwise, applying an object which was not intended to
being applied at all, fails with ‘NotAFunction object’.

1.12 Syntax
In order to facilitate macros, the Kogut syntax is defined in three stages
rather than the usual two:

1. Lexical syntax: a sequence of characters is transformed to a sequence
of tokens.

2. Abstract grammar: the sequence of tokens is transformed to an abstract
syntax tree.

3. Concrete grammar: the abstract syntax tree is interpreted as a struc-
ture of expressions, patterns, and definitions.

2 Lexical Syntax
The notation used to describe lexical rules is described in table 1.

The lexical rules are specified in tables 2 and 3. For convenience, “ASCII:”
notes remind the intersections of the given sets of characters with ASCII.

The source text is split into fragments which match token or ignore.
At each point the longest match is used. The sequence of tokens is used for
further parsing.

10

space ::= ‹Zs› | U+0009
ASCII: “ ” | U+0009

newLine ::= U+000A | U+000D | U+000D U+000A
nameFirst ::= ‹Lu› | ‹Ll› | ‹Lt› | ‹Lm› | ‹Lo› | ‹Nl› |

U+2118 | U+212E | U+309B | U+309C
ASCII: “A” . . . “Z” | “a” . . . “z”

nameRest ::= nameFirst | ‹Mn› | ‹Mc› | ‹Nd› | ‹Pc› | “'” |
U+1369 . . . U+1371

ASCII: “A” . . . “Z” | “a” . . . “z” | “0” . . . “9” | “_” | “'”
digit ::= “0” . . . “9”

hexDigit ::= “0” . . . “9” | “A” . . . “F” | “a” . . . “f”
octDigit ::= “0” . . . “7”
binDigit ::= “0” | “1”

escape ::= “"” | “'” | “\” |
“a” | “b” | “t” | “n” | “v” | “f” | “r” | “s” |
digit+ “;” |
“x” hexDigit+ “;” |
“o” octDigit+ “;” |
space∗ newLine space∗

name ::= nameFirst nameRest∗ |
“_” nameRest+ |
“'” (until“'”|“\” | “\” escape)∗ “'”

intLit ::= digit+ |
(“0x” | “0X”) hexDigit+ |
(“0o” | “0O”) octDigit+ |
(“0b” | “0B”) binDigit+

exponent ::= (“e” | “E”) (“+” | “-”)? digit+

floatLit ::= digit+ “.” digit∗ exponent? |
“.” digit+ exponent?

digit+ exponent |
stringLit ::= “"” (until“"”|“\” | “\” escape)∗ “"”

symbolLit ::= “#” name
literal ::= intLit | floatLit | stringLit | symbolLit

Table 2: Lexical rules, part 1

11

label: ::= name “:”
.field ::= “.” name

@intLit ::= “@” intLit
%op ::= “%” name
op% ::= name “%”

operator ::= “@” | “*” | “/” | “+” | “-” |
“==” | “~=” | “<” | “>” | “<=” | “>=” |
%op | op%

punctuation ::= “(” | “)” | “[” | “]” | “{” | “}” |
“?” | “=>” | “...” | “!” | “^” | “~” | “->” |
“\” | “&” | “|” | “=” | “,” | “;”

token ::= name | “_” | literal | “()” | label: | .field |
@intLit | operator | punctuation

lineComment ::= “//” untilnewLine

comment ::= “/*” until“/*”|“*/”
(comment until“/*”|“*/”)

∗ “*/”
ignore ::= space | newLine | lineComment | comment

Table 3: Lexical rules, part 2

12

“\"” “"”
“\'” “'”
“\\” “\”
“\a” U+0007
“\b” U+0008
“\t” U+0009
“\n” U+000A
“\v” U+000B
“\f” U+000C
“\r” U+000D
“\s” “ ”

“\” digit+ “;” decimal character code
“\x” hexDigit+ “;” hexadecimal character code
“\o” octDigit+ “;” octal character code

“\” space∗ newLine space∗ ignored
“_” space∗ newLine ignored

Table 4: Escape sequences in strings and quoted names

Literals represent constant values. An integer literal denotes an int with
the given value. A float literal denotes the application of the value of the
dynamic variable DefaultReal to a ratio or int with the given value.

In a string literal any character except “"”, “\”, and newLine stands
for itself; newLine stands for U+000A; and escape sequences are interpreted
according to table 4.

Quoted symbol names are processed like string literals, except that the
demiliters are “'” instead of “"”. Quoted names are just a mechanism of
inserting arbitrary characters into names; the meaning of an unquoted name
is the same as the meaning of the corresponding quoted name.

A name starting with “_” is associated with a private symbol (see section
5.14 on page 64), unique for the given module. Other names are associated
with the corresponding public symbols.

Rationale: The syntax of unquoted names is consistent with Unicode recommendations
for identifier syntax, with the addition of “'” as a nonfirst character. 2

Rationale: A separate @intLit token lets an expression like ‘array@0.field’ be inter-
preted as the likely intended ‘array@(0).field’ rather than ‘array@(0.) field’. 2

13

3 Abstract Grammar
The grammar is specified in tables 5 and 6, using a notation similar to the
lexical syntax in table 1, except that it works on the level of tokens instead
of characters.

For presentation brevity, the grammar has been left ambiguous. An un-
ambiguous context-free grammar can be obtained by adding variants of ap-
propriate symbols while applying the following constraints:

• param may not begin with ‘{’ nor ‘=>’.

• The body after ‘=>’ extends to the right as far as possible, i.e. unparen-
thesized ‘=>’ may only appear in the rightmost subterm before ‘)’, ‘]’,
‘}’, or the end of input.

In this document ‘→’ and ‘⇒’ denote ‘−>’ and ‘=>’ respectively.
Some forms are merely syntactic sugar, as specified in table 7.
Parentheses are used for grouping, they are not retained in the AST.
Since rewriting of the above syntactic sugar happens on the AST level,

the left-to-right evaluation rule applies to the result of the rewriting, even if
the rewriting reorders subexpressions.

4 Concrete Grammar
The concept of signals, the rules of signal blocking and synchronous mode
are explained in section 5.26 on page 70.

The notation for describing the meaning of syntactic forms uses the fol-
lowing convention: a line consisting of ‘· · ·’ by itself means that the previous
line can be repeated any number of times, including zero. The ‘i’ indices at
metavariables in a repeated line stand for successive integers in the repeti-
tions.

4.1 Expressions
An expression ‘app = value’, when app is a syntactic application, means app
with value appended as the last argument.

4.1.1 References

Evaluating the name of a reference applies the reference object to no argu-
ments, which by convention gets the current value of the reference.

An expression ‘ref name’ evaluates to the reference itself.

14

atom ::= name reference
| ‘_’ wildcard pattern
| literal literal
| ‘()’ no arguments
| ‘(’ expr ‘)’ grouping
| ‘[’ arg∗ ‘]’ list
| (‘?’ param∗)? ‘{’ body ‘}’ lambda abstraction
| (‘?’ param∗)? ‘=>’ body lambda abstraction

post1 ::= post1 .field field
| post1 ‘@’ atom indexing
| post1 @intLit indexing
| atom

post2 ::= post1 ‘...’ multiple values
| post1 ‘!’ dispatched parameter
| post1 ‘^’ post1 specialized to type
| post1

arg ::= ‘~’ arg logical negation
| label: arg pair with a symbol
| post2

param ::= arg

apply1 ::= arg arg+ application
| arg

apply→ ::= apply?→ ‘->’ arg arg∗ application
| apply1

applyL ::= apply?L ‘~’? %op apply→ application
| apply→

applyR ::= apply→ ‘~’? op% applyR application
| apply→

apply2 ::= apply?L ‘~’? %op apply→ application
| apply→ ‘~’? op% applyR application
| apply→

Table 5: Abstract grammar, part 1

15

mul ::= mul ‘*’ apply2 multiplication
| mul? ‘/’ apply2 division
| apply2

add ::= add ‘+’ mul addition
| add? ‘-’ mul subtraction
| mul

rel ::= add? ‘==’ add equal
| add? ‘~=’ add inequal
| add? ‘<’ add less than
| add? ‘>’ add greater than
| add? ‘<=’ add less than or equal
| add? ‘>=’ add greater than or equal
| add

cons ::= rel ‘\’ cons prepend to a list
| rel

and ::= cons ‘&’ and conjunction
| cons

or ::= and ‘|’ or alternative
| and

assign ::= or ‘=’ assign assignment
| or

pair ::= assign ‘,’ pair pair
| assign

expr ::= (pair ‘;’)+ pair? local definitions
| pair

body ::= (pair ‘;’)∗ pair? definitions

Table 6: Abstract grammar, part 2

16

{body} ≡ ?{body}
?param∗ ⇒body ≡ ?param∗ {body}
⇒body ≡ ?{body}
obj.field ≡ obj #field
label:expr ≡ #label, expr
arg1→fun arg∗ ≡ fun arg1 arg∗

arg1 %op arg2 ≡ op arg1 arg2
arg1 ~%op arg2 ≡ ~op arg1 arg2
arg1 op% arg2 ≡ op arg1 arg2
arg1 ~op% arg2 ≡ ~op arg1 arg2
→fun arg∗ ≡ fun _ arg∗

%op arg2 ≡ op _ arg2
~%op arg2 ≡ ~op _ arg2
== arg2 ≡ _ == arg2
~= arg2 ≡ _ ~= arg2
< arg2 ≡ _ < arg2
> arg2 ≡ _ > arg2
<= arg2 ≡ _ <= arg2
>= arg2 ≡ _ >= arg2

Table 7: Syntactic sugar in the abstract grammar

17

An expression ‘name = value’ means ‘(ref name) value’, which by con-
vention sets the new value of the reference if the reference supports that.

4.1.2 Application

The syntax of object application, ‘fun arg+’, is interpreted specially when
fun is an identifier belonging to a fixed set of special expression operators:
case, function, handle, if, ifDefined, local, loop, match, method, module,
receive, ref, struct, try.

Otherwise this syntax denotes the application of object fun to arguments
arg+, modified as follows.

Occurrences of ‘()’ among arguments are removed. This syntax allows to
express application of an object to the empty list of arguments, since fun
alone denotes the object itself and could not be used for this purpose.

An argument followed by ‘...’ must evaluate to a list, and elements of the
list are spliced in the place of the argument as separate arguments.

If ‘_’ is used as the function and/or some of the arguments, the expres-
sion denotes a partial application. Elements which are not ‘_’ are evaluated
immediately. The value of the partial application is a function with the same
number of parameters as there are ‘_’s, which performs a tail-call to the ap-
propriate combination of the previously computed values and the parameters
supplied later.

A partial application may include at most one occurrence of ‘_...’, which
passes an arbitrary number of parameters to the eventual application.

If fun is preceded by ‘~’, the negation is applied to the result of the
application. In the case of a partial application it is the result of the resulting
function which is negated, rather than the function itself.

Some other expression forms, whose evaluation begins with evaluating
some of their arguments, also support multiple values at some argument posi-
tions, or partial application at some arguments. In particular ‘name = value’
supports multiple values and partial application at value. All special expres-
sion operators support operator negation.

An expression ‘ref app’, when app is an object application, means
‘app = _...’.

4.1.3 Literals

A literal always denotes the same value, given literally.

18

4.1.4 Lists

An expression ‘[arg∗]’ creates a list with the given elements. This expression
supports multiple values and partial application.

Example: An expression ‘[x...]’ has the same value as x, except that it ensures that x
is a list. 2

4.1.5 Local definitions

A sequence of ‘;’-separated definitions, optionally followed by ‘;’, with at least
one ‘;’, denotes an expression which introduces a local scope and enters the
definitions.

4.1.6 Unnamed functions

An expression ‘?param∗ {body}’ denotes a function of type
UNNAMED_FUNCTION. When the function is applied, it introduces a
local scope, matches arguments of the application against patterns param∗,
and enters definitions in body. If arguments are rejected by parameter
patterns, the function fails with ‘BadArguments arguments Null min max’,
where min and max are the bounds of acceptable arity (Null means no limit).

An expression:
function [

param∗
i {bodyi}

· · ·
]

denotes a function which introduces a local scope and matches the arguments
against param∗

i in order. As soon as an accepting case is found, definitions
in the corresponding bodyi are entered. If every case rejects the arguments,
the function fails as above.

In a function expression, the name again inside parameters and bodies
is bound to the function itself.

If ‘label:’ is added before the ‘[’, the name label is used instead of again.
Other forms:

function ?param∗ {body} ≡
function [param∗ {body}]

function label:?param∗ {body} ≡
function label:[param∗ {body}]

19

4.1.7 Operators which denote function application

Some operators denote applications of particular standard functions:

dict@key ≡ ’@’ dict key
dict@key = value ≡ ’@’ dict key value
~expr ≡ ’~’ expr
expr1 * expr2 ≡ ’*’ expr1 expr2
expr1 / expr2 ≡ ’/’ expr1 expr2
/expr2 ≡ ’/’ expr2
expr1 + expr2 ≡ ’+’ expr1 expr2
expr1 − expr2 ≡ ’−’ expr1 expr2
−expr2 ≡ ’−’ expr2
expr1 == expr2 ≡ ’==’ expr1 expr2
expr1 ~= expr2 ≡ ’~=’ expr1 expr2
expr1 < expr2 ≡ ’<’ expr1 expr2
expr1 > expr2 ≡ ’>’ expr1 expr2
expr1 <= expr2 ≡ ’<=’ expr1 expr2
expr1 >= expr2 ≡ ’>=’ expr1 expr2
first \ rest ≡ ’\\’ first rest
left, right ≡ ’,’ left right

The expression ‘dict@key = value’ supports multiple values at value, and
‘first \ rest’ supports multiple values at first. All of the above operators
except ‘~expr’ support partial application at all arguments. ‘ref dict@key’
means ‘ref (’@’ dict key)’.

The ’@’ operator is a generic function. Its 2-argument methods are
expected to implement dictionary lookup and sequence indexing, and 3-
argument methods implement setting/adding a value at a particular key in
a dictionary, or setting an element of a mutable sequence.

The ’~’ function is defined in section 5.2 on page 32.
Arithmetic functions are defined in section 5.11.2 on page 42 and in sec-

tion 5.11.3 on page 49.
The ’\\’ operator puts all arguments except the last one in a list, and

appends the value of the last argument which must be a list.
The ’,’ function is defined in section 5.13 on page 63.

4.1.8 Conditionals

An expression:
if [

20

condi {bodyi}
· · ·

]
evaluates condi in order. As soon as a true condition is found, a local scope
is introduced and definitions in the corresponding bodyi are entered. If all
conditions are false, if fails with AllConditionsFalse.

‘_’ used as a condition in if means True.
Other forms:

if cond {then} {else} ≡ if [cond {then} _ {else}]
if cond {then} ≡ if cond {then} {}
expr1 & expr2 ≡ if expr1 {expr2} {False}
expr1 | expr2 ≡ if expr1 {True} {expr2}

The forms ‘if cond {then} {else}’ and ‘if cond {then}’ support partial
application at cond.

4.1.9 Case selection

An expression:
case subj∗ [

pat∗i {bodyi}
· · ·

]
evaluates subj∗ and matches their values against pat∗i in order. As soon as
an accepting case is found, definitions in the corresponding bodyi are entered.
If every case rejects subj∗, case fails with ‘NoMatch subjects’.

Other forms:

case subj∗ ?pat∗ {then} {else} ≡
case subj∗ [pat∗ {then} _... {else}]

case subj∗ ?pat∗ {then} ≡
case subj∗ ?pat∗ {then} {}

4.1.10 Loop

An expression:
loop arg∗ [

pat∗i {bodyi}
· · ·

21

]
is similar to the corresponding case expression, except that the name again
inside patterns and bodies is bound to the function which evaluates the loop
again with the arguments of the function instead of arg∗.

If ‘label:’ is added before the ‘[’, the name label is used instead of again.
Other forms:

loop arg∗ ?pat∗ {body} ≡ loop arg∗ [pat∗ {body}]
loop arg∗ label:?pat∗ {body} ≡ loop arg∗ label:[pat∗ {body}]

Example: Write elements of a list in a human-friendly form:

case list [
[] {}
[x] {Write x}
[x y] {Write x "␣and␣" y}
_ {

loop list [
[x] {Write "and␣" x}
(x\xs) {Write x ",␣"; again xs}

]
}

];
2

4.1.11 Local rebinding

An expression ‘local reference value body’ means
‘(ref reference) value body’.

Note: Usually reference is a dynamic variable, and body is a nullary function. In this
case the expression evaluates body with this reference locally rebound to a new cell with
this initial value. 2

4.1.12 Exception catching

An expression:
try fun

pati {bodyi}
· · ·
done

evaluates ‘fun()’. If it succeeds, done is tail-called with the result. Otherwise,
if it fails, the exception is matched against pati in order. As soon as an

22

accepting case is found, definitions in the corresponding bodyi are executed.
If every case rejects the exception, try fails with the same exception.

If done is omitted, Identity is assumed.
During matching of pati and evaluating bodyi, signals are blocked once

more than outside try.
If ‘handled:’ is added before ‘{bodyi}’, the signal blocking state is restored

to the state outside try before entering bodyi. A bodyi is in a tail position
with respect to try if it is marked as ‘handled:’.

4.1.13 Signal handling

An expression:
handle [

pati {bodyi}
· · ·

] body
means:

local Signal (let super = Signal; function [
pati {bodyi}
· · ·
signal {super signal}

]) body
An expression:

handle [
pati {bodyi}
· · ·

]
means:
Signal = (let super = Signal; function [

pati {bodyi}
· · ·
signal {super signal}

])
In either case function does not make the name again visible in patterns

and bodies.
Other forms:

handle ?param∗ {body1} body2 ≡ handle [param∗ {body1}] body2
handle ?param∗ {body1} ≡ handle [param∗ {body1}]

23

4.1.14 Unnamed structures

An expression ‘struct {defs}’ introduces a local scope, executes the defini-
tions, and evaluates to an object of type STRUCT with fields being public
references introduced by the definitions.

The object is created as an incomplete object at the beginning, and is
available in its own scope under the name this. Applying an incomplete
object fails with ‘IncompleteObject type’. When the definitions succeed, the
object gets completed.

4.2 Patterns
4.2.1 Pattern lists

In some syntactic forms a list of values is matched against a list of patterns.
At most one pattern may be followed by ‘...’. If there is no such pattern,

the number of values must be the same as the number of patterns, and then
the values are matched against the corresponding patterns.

If there is a pattern of the form ‘pati...’, the number of values must be
greater than or equal to the number of the other paterns in order for the
patterns to match. Other patterns correspond to single values taken from
the beginning and the end of the list, according to the pattern positions,
while pati corresponds to the list of the remaining values.

4.2.2 References

A pattern name binds name to this value.
A pattern ‘_’ binds no names.
A pattern ‘ref name’ binds name to the value itself, treated as a reference.
A pattern ‘var name’ binds name to a new mutable variable with this

initial value.
A pattern ‘dynamic name’ binds name to a new dynamic variable with

this initial value of the default cell.

4.2.3 Visibility

A pattern ‘private pat’ means pat, except that names it binds are marked as
private, unless overridden by inner public declarations. Similarly, ‘public pat’
marks names as public.

Forms which bind a name also accept ‘private name’ and ‘public name’
which override the visibility.

24

4.2.4 Predicates

The syntax of object application, ‘fun arg+’, is interpreted specially when
fun is an identifier belonging to a fixed set of special pattern operators:
define, dynamic, if, ifDefined, match, maybe, ofType, private, public, ref,
set, var, where, with.

Otherwise ‘pat1→fun arg∗’ matches the subject against pat1. Then the
subject gets accepted if the result of the application of fun to the subject
and arg∗ is true.

A pattern ‘pat1→if cond’ matches the subject against pat1. Then the
subject gets accepted if cond is true.

4.2.5 Sequencing several matches

A pattern ‘pat1 & pat2’ matches the subject against pat1, and then against
pat2.

A pattern ‘pat1→match subj2 pat2’ matches the subject against pat1, and
then matches subj2 against pat2.

A pattern ‘pat1→where fun arg∗ pat2’ matches the subject against pat1,
and then matches the result of the application of fun to the subject and arg∗

against pat2.
A pattern ‘pat1→maybe fun arg∗ pat2’ means:

‘pat1→where fun arg∗ {[]} [_] (pat2_)’.
Note: This relies the convention of some functions, such as Get, returning an optional

result by accepting a parameter list ending with absent present, and entering ‘absent()’
or ‘present result’ depending on whether the result is present. In this case the result is
matched against pat2 if present. 2

4.2.6 Checking types

A pattern ‘pat→ofType expr+’ matches the subject against pat.
Then, if ‘subject→HasType expr+’ is False, matching fails with
‘BadType subject (’,’ expr+)’.

4.2.7 Extracting components of compound values

A pattern ‘[pat∗]’ accepts the subject if it is a list and its elements match
patterns pat∗.

A pattern ‘left, right’ accepts the subject if it is a pair and its elements
match patterns left and right.

A pattern:

25

pat0→with
labeli:pati
· · ·

matches the subject against pat0, and then for each case matches the result
of the application of the subject to the symbol #labeli against pati.

4.2.8 Alternative matches

A pattern ‘pat1 | pat2’ matches the subject against pat1. If it is rejected, it
is matched against pat2.

The whole pattern binds names which are common to pat1 and pat2. A
common name is statically treated as a constant if it was a constant in both
branches.

4.3 Definitions
4.3.1 Assignment

A definition ‘app = value’, when app is a syntactic application, means app
with value appended as the last argument. This substitution is performed
before other rules.

4.3.2 Statements

A definition is interpreted specially if it has the syntax of object application,
‘fun arg+’, and fun is an identifier belonging to a fixed set of special defi-
nition operators: def, defined, dynamic, export, extend, feature, forward,
ifDefined, include, lazy, let, private, public, reexport, subtypes, type, use,
var.

Otherwise the definition is a statement. It is interpreted as an expression
to be executed, its value is ignored, and it binds no names.

4.3.3 References

A definition ‘let pat = value’ matches value against pat. If it is rejected,
the definition fails with ‘NoMatch [value]’. This form violates the left-to-right
evaluation rule: value is evaluated before subexpressions of pat.

A definition ‘dynamic name’ creates a dynamic variable which is initially
not associated with any cell: in places where it is not locally rebound, get-
ting or setting its value fails with ‘NotDefined variable’, where variable is the
symbol of name.

26

A definition ‘lazy name = expr’ creates a lazy variable. Lazy variables
support getting the value only. Getting it for the first time evaluates expr,
then stores and returns its value, or stores and propagates the exception if
expr failed. Getting the lazy variable later returns the stored value imme-
diately or fails immediately. Getting it while another thread is currently
evaluating it blocks the getting thread until the outcome becomes known.
Getting it while the same thread is currently evaluating it fails immediately
with RecursiveLock. The dynamic environment of expr corresponds to the
definition of the variable, rather than to the place of evaluating expr for the
first time.

A definition ‘forward name’ creates a forward variable. Its value can only
be set once; an attempt to set it again fails with ‘AlreadyDefined variable’,
where variable is the symbol of name. Until it becomes set, an attempt to
get its value fails with ‘NotDefined variable’.

Other forms:

ref name = value ≡ let (ref name) = value
var name = value ≡ let (var name) = value
var name ≡ var name = Null
dynamic name = value ≡ let (dynamic name) = value

4.3.4 Named functions

A definition:
def name [

param∗
i {bodyi}

· · ·
]

binds name to a function of type NAMED_FUNCTION. When the function
is applied, it introduces a local scope and matches the arguments against
param∗

i in order. As soon as an accepting case is found, definitions the
corresponding bodyi are entered. If every case rejects the arguments, the
function fails with ‘BadArguments arguments function min max’, where func-
tion is the symbol of name, and min and max are the bounds of acceptable
arity (Null means no limit).

The name again inside parameters and bodies is bound to the function
itself.

If ‘label:’ is added before the ‘[’, the name label is used instead of again.
Cases where some of param∗

i end with ‘!’ are generic cases, and the marked
parameters are the keys. A generic case must have an empty bodyi, and if it

27

includes a parameter ending with ‘...’, all the keys must precede it.
Other forms:

def name param∗ {body} ≡ def name [param∗ {body}]

4.3.5 Methods

A definition:
method function [

pat∗i {bodyi}
· · ·

]
adds a method to a generic function.

The function expression must evaluate to a named function. There must
be at least one case. Some of the patterns in the first case may have the
form ‘pat^type’, where the type expression must evaluate to a tuple of types.
These patterns are the keys. If the first case includes a parameter ending
with ‘...’, all the keys must precede it.

If some of the key types are tuples longer than one element, then a method
with the same definition is added for every combination of types taken from
these tuples.

The generic case to which the method is added is the first generic case
of function which matches the common arity of the method. The common
arity is a fixed arity if all method cases have the same fixed arity, or the lower
bound of arities accepted by all method cases otherwise.

A matching arity means that all lengths of the argument list which could
match the method arity must also match the generic case arity. If no match-
ing generic case is found, method fails with ‘NoGeneric function arity’, where
function is the symbol of the generic function, and a negative arity encodes
the arity being at least −1−arity.

The position of each key of the method definition must corre-
spond to a key in the generic case, otherwise method fails with
’NotDispatched function arity parameter’, where parameter is the parameter
position, counting from 0. If a key in the generic case does not correspond
to a key in the method definition, OBJECT is assumed as the type.

If the generic case already contains a method with the same sequence
of key types, method fails with ‘MethodConflict function arity types’, where
types is a list of key types.

If a generic function is being applied and the best applicable method is
found at supertypes of the types of the key arguments, it is added at exact

28

types of the key arguments, and thus other methods may conflict with a
method added this way.

The name again inside parameters and bodies is bound to the method
itself.

The name super inside parameters and bodies is bound to a function
which tail-calls the next applicable method of the same generic case for the
arguments of super, i.e. the best applicable method which is worse than
the method being defined. If there is no next applicable method, super
fails with ‘NoSuperMethod function arity arguments after’, where after is a list
of the key types of the method being defined. If the method being de-
fined would not be an applicable method for the arguments of super, it
must have been either because the arity does not match, in which case
super fails with ‘BadArguments arguments function min max’, where min and
max are the bounds of acceptable arity (Null means no limit), or because
some of the key types of the method being defined is not a supertype of
the corresponding key argument of super, in which case super fails with
‘NotSupertype subtype supertype’.

Other forms:

method function param∗ {body} ≡
method function [param∗ {body}]

4.3.6 Types

Below arg∗ is a list of arguments of one of the following forms:

• ‘is:type’, where type is an expression which evaluates to a type

• ‘final:bool’, where bool is an expression which evaluates to a bool

There must be at most one ‘final:bool’ argument, which specifies whether
the type is final. The default is False for abstract types, and True for nonab-
stract types.

A scope is optionally associated with an implicit supertype, absent by
default.

When a new type is defined, its direct supertypes include:

1. the optional implicit supertype

2. the explicit supertypes (specified with is:type arguments)

3. an optional extra supertype, depending on the definition syntax

29

An attempt to declare a subtype of a final type fails with ‘TypeIsFinal type’.
A definition:

type name arg∗

creates an abstract type named name.
A definition:

type name arg∗ {defs}
creates an abstract type named name. It is set as the implicit supertype,
definitions from defs are executed, and the implicit supertype is restored to
its previous state. If the type is specified as final, its final status is applied
after defs succeed.

A definition:
subtypes type {defs}

evaluates type as an expression, and its value must be a type. It is set as
the implicit supertype, definitions from defs are included, and the implicit
supertype is restored to its previous state.

A definition:
type name arg∗ con

where con is a name, creates a singleton type named name, with a single value
named con. The extra supertype is SINGLETON. This definition implicitly
defines a method:

method SingletonName _^name {symbol};
where symbol is the symbol of con.

A definition:
type name arg∗ con field∗

where con and fields are names, creates a record type named name, with
a constructor function named con. Objects of this type contain fields with
the specified names. When the constructor is applied, it returns an object of
this type, with fields given by arguments of the constructor. A record type
is a value type, which means that the constructor is allowed to return some
existing object with the given value. The extra supertype is RECORD. This
definition implicitly defines methods:

method RecordConstructor _^name {con};
method RecordFields _^name {[symbol∗]};

where symbol∗ are symbols of field∗.
A definition:

30

type name arg∗ con {defs}
where con is a name, creates a singleton type named name, with a single value
named con with explicitly specified behavior. A new scope is introduced, def-
initions from defs are executed, and public references they introduce become
fields of the object.

A definition:
type name arg∗ con [

param∗
i {defsi}

· · ·
]

where con is a name, creates an type with a constructor function named
con. When the constructor is applied, it introduces a local scope, matches
arguments against param∗

i like in def, and executes definitions from the
appropriate defsi. Public reference introduced by the matching param∗

i and
defsi become fields of the object.

The object of the type being defined is created as an incomplete object
before executing its definitions, and is available in its own scope under the
name this. Applying an incomplete object fails with ‘IncompleteObject type’.
When the definitions succeed, the object gets completed.

Other forms (in the second case param∗ must not be all unqualified
names, because it would mean a record type):

type name arg∗ con param∗ {defs} ≡
type name arg∗ con [param∗ {defs}]

type name arg∗ con param∗ ≡
type name arg∗ con param∗ {}

4.3.7 Visibility

A definition ‘private {defs}’ executes defs, except that names they bind are
marked as private, unless overridden by inner public declarations. Similarly,
‘public {defs}’ marks names as public.

5 Prelude
The Prelude module is imported implicitly to each module which does not
import it explicitly in its first definition after the module header.

In the descriptions below ‘· · ·’ replaces implementation details, which are
often primitive constructs not expressible in terms of others.

31

By convention type names are written with all caps, with words separated
by “_”, and the constructor of a type has the same name as the type, but
written with capitalized words without separators. Definitions complying to
this naming convention are not explained in this respect.

5.1 Null
Unless specified otherwise, a function which is executed for side effects and
has no interesting result returns Null. Null is also used as a general mark of
the absence of a more meaningful value.

type NULL Null;

5.2 Booleans
When a value is interpreted as a condition, True is considered true, and False
is false. Any other value is an error.

type BOOL final:True {
type TRUE True;
type FALSE False;

};

def ’~’ x {if x {False} {True}};

5.3 Equality

def IsSame x y {· · ·};
IsSame is called physical equality, and tests if its arguments point to the

same object, or in other words compares object identity.
def Is [

x (y→if (x %IsSame y)) {True}
x (y→if (Type x ~%IsSame Type y)) {False}
x! y {}

];
method Is _ _ {False};
Is is called strict equality, and by convention tests if its arguments repre-

sent the same abstract value.

32

For many purposes this is the smallest useful equivalence relation. For
object types this is the same relation as physical equality, which is also
the default for types which do not specialize it themselves. Any way of
distinguishing objects which are not strictly equal usually involves physical
equality.

Strict equality on floating point numbers differs from arithmetic equality:
0.0 ~%Is (−0.0) & Float Null %Is Float Null.

Note: Since Is dispatches to the generic case only after checking that the arguments
are not physically equal, a method like method Is _^X _ {False} means that values of
type X are strictly equal whenever they are physically equal. 2

5.4 Hashing

def Hash obj! {};
let MaxHash = 1→BitShift (· · ·) − 1;
def CombineHash x y {· · ·};
Hash returns an integer corresponding to the given value, which is used

by the implementation of some dictionaries and sets to quickly partition
values into separate buckets. Values which are strictly equal must yield equal
hashes, and values which are not strictly equal are likely to yield different
hashes. Objects which suport Is do not necessarily support Hash.

MaxHash and CombineHash are defined for convenience of writing custom
hashing functions. Hash values will be BitAnd’ed with MaxHash; Hash is
allowed to return any integer, but bits above MaxHash will be discarded.
CombineHash can be used to compute a hash of a structured value from
hashes of its components.

5.5 Ordering

def ’==’ x! y! {};
def ’~=’ x y {~(x == y)};
def ’<’ x! y! {};
def ’>’ x y {y < x};
def ’<=’ x! y! {};
method ’<=’ x y {~(y < x)};
def ’>=’ x y {y <= x};

These relations define total orders (with exceptions) over those subsets
of values which traditionally have a natural total order defined. Numbers

33

are compared in the standard way, with standard floating point peculiarities:
0.0 == −0.0 & Float Null ~= Float Null. Characters are compared by code
points, pairs and sequences are compared lexicograpically.

‘==’ is called arithmetic equality. It is generally compatible with ‘<’ and
‘<=’, except that complex numbers have ‘==’ defined but not ‘<’ nor ‘<=’,
along with the mathematical tradition.

Numbers of different types which represent the same mathematical values
compare as arithmetically equal, even though they are not strictly equal.

def Min [
x {x}
x! y! {}
x y zs... {Min x y→Min zs...}

];
method Min x y {if (y < x) {y} {x}};
def Max [

x {x}
x! y! {}
x y zs... {Max x y→Max zs...}

];
method Max x y {if (y < x) {x} {y}};

By convention, Min returns the smallest of the arguments, and Max re-
turns the largest, except that for numbers they behave like an arithmetic
operation regarding mixed-type arguments, −0.0, and Float Null.

def IsInRange [
x max {again x 0 max}
x min max {x >= min & x < max}

];
def IsBetween x min max {x >= min & x <= max};

5.6 Freeing resources

def Close obj! {};
method Close _ {};
Close frees resources associated with the given object if there are resources

which can be freed explicitly, and depending on the type it may perform other
actions which are usually performed as the last thing to be done with the
object. This may render the object unusable, possibly with other objects
which are considered parts of this object.

34

By default Close does nothing. By convention it is safe to use Close several
times on the same object.

5.7 Simple functions

def Identity x {x};

def Ignore _... {};

def Apply f xs... {f xs...};

5.8 Registered lists
A registered-list is a sequence of values which supports unregistering values
using a key obtained at their registration.

type REGISTERED_LIST is:SEQUENCE RegisteredList() {· · ·};
type REGISTERED_KEY · · ·;

def Register list! value {};
method Register list^REGISTERED_LIST value {· · ·};

By convention, ‘Register list value’ inserts value at the beginning of list,
and returns a key (which has type REGISTERED_KEY in the case of a
registered-list).

method Close key^REGISTERED_KEY {· · ·};
The Close method of a registered-key unregisters the associated occur-

rence of the value from the appropriate registered-list.
A registered-list can be traversed using standard functions for traversing

sequences.
A registered-list can be modified while it is being traversed, possibly from

another thread. In this case traversal uses a snapshot of the contents from
the start of the traversal.

5.9 Exceptions

def Fail exn {· · ·};
‘Fail exn’ fails with exception exn.
The main categories of exceptions can be distinguished with supertypes:

35

type PROGRAM_ERROR;
type EXTERNAL_ERROR;
type RESOURCE_ERROR;
type EXIT;
type SPECIAL_RESULT;

Program errors are manifestations of bugs in the program. A well-written
program should prevent them before they happen.

External errors reflect failures reported by the operating system or bad
data sent from outside of the program.

Resource errors mean that the system is unable to provide enough re-
sources for the program to continue, possibly because the data given to the
program are too large.

Exits are exceptions used to abort a subcomputation.
Special results allow a callback function to communicate a special condi-

tion to its caller, if any object returned as the normal result is understood
in some regular way. They are generally caught immediately after they are
thrown.

5.9.1 Program errors

subtypes PROGRAM_ERROR {

type BAD_TYPE BadType object type;
object was found when a value of the given type was expected.

type NOT_A_FUNCTION NotAFunction object;
Applying object to arguments is meaningless.

type NO_FIELD NoField object field;
object does not have a field with name field (a symbol).

type NO_MATCH NoMatch objects;
objects (a list) match no pattern(s) in a case matching.

type ALL_CONDITIONS_FALSE AllConditionsFalse;
All conditions of an if are False.

type BAD_ARGUMENTS BadArguments arguments function min max;
Bad arguments have been passed to function (a symbol or Null); the func-

tion expects at least min and at most max arguments (Null means no limit).
type NOT_SETTABLE NotSettable object field;

36

field (a symbol) of object can only be read, not written.
type UNKNOWN_KEYWORDS UnknownKeywords keywords;

These keywords (a list of symbols) are unknown to the callee.
type NOT_DEFINED NotDefined name;

Definition of this name (a symbol) has not been reached yet.
type ALREADY_DEFINED AlreadyDefined name;
name can be assigned only once.

type LOCK_NOT_LOCKED LockNotLocked;
An attempt to unlock a lock which has not been locked by the current

thread.
type INCOMPLETE_OBJECT IncompleteObject type;

An attempt to use an object of this type before its definition completed.
type RECURSIVE_LOCK RecursiveLock;

A thread tries to take the same lock again.
type DEADLOCK Deadlock;

No threads can run.
type OBJECT_CLOSED ObjectClosed type;

An attempt to use an object of this type after it has been closed.
type OBJECT_LOCKED ObjectLocked type;

An attempt to use an object of this type while it is in use by another
entity

type SIGNALS_UNBLOCKED SignalsUnblocked;
An attempt to unblock signals when there are already unblocked.

type ALREADY_EXITED AlreadyExited;
An attempt to exit from a scope which has already completed.

type BAD_ARGUMENT BadArgument value what range;
value, denoting what (a description string), should have the form of range

(a description string).
type OUT_OF_RANGE OutOfRange value what min max;
value, denoting what (a description string), should be in the range between

min and max (inclusive).

37

type NOT_SINGLE_CHAR NotSingleChar value;
value is a string with a length other than 1.

type TIME_OUT_OF_RANGE TimeOutOfRange value;
value denotes time too far in the past or future.

type ARITHMETIC_ERROR ArithmeticError function arguments;
arguments (a list) do not belong to the domain of this arithmetic function

(a symbol).
type EMPTY_COLLECTION EmptyCollection;

A collection is empty.
type INDEX_OUT_OF_RANGE IndexOutOfRange index size;

An attempt to index a sequence using this index, while the sequence has
only this size.

type NEGATIVE_SIZE NegativeSize size;
size was specified as a size, but it is negative.

type BAD_SIZE BadSize size expected;
A collection has this size instead of expected size.

type KEY_NOT_FOUND KeyNotFound key;
key is not in a dictionary.

type KEY_CONFLICT KeyConflict key;
key is already present in a dictionary.

type INCONSISTENT_SUPERTYPES InconsistentSupertypes type;
Linearization of supertypes of type is impossible because some supertypes

include the same super-supertypes in a different order.
type NOT_SUPERTYPE NotSupertype subtype supertype;

The type given as supertype is not a supertype of subtype.
type TOP_SUPERTYPE TopSupertype;

There can be no supertypes of the OBJECT type.
type NO_METHOD NoMethod function arity arguments;

The generic case with this arity of this function (a symbol) is not defined
for the key arguments. A negative arity encodes the arity being at least
−1−arity.

38

type NO_SUPER_METHOD NoSuperMethod function arity arguments after;
The generic case with this arity of this function (a symbol) does not have a

next method for the key arguments after types given as after (a list of types).
A negative arity encodes the arity being at least −1−arity.

type NO_GENERIC NoGeneric function arity;
This generic function (a symbol) does not have a generic case of this arity.

A negative arity encodes the arity being at least −1−arity.
type NOT_DISPATCHED NotDispatched function arity parameter;

The generic case with this arity of this function (a symbol) is not dis-
patched on this parameter position, counting from 0. A negative arity encodes
the arity being at least −1−arity.

type METHOD_CONFLICT MethodConflict function arity types;
The generic case with this arity of this function (a symbol) has been already

defined for these types (a list of types). A negative arity encodes the arity
being at least −1−arity.

type IMPOSSIBLE_ERROR ImpossibleError message;
Program has reached a place which was thought to be unreachable;

message explains the reason.
};

5.9.2 External errors

subtypes EXTERNAL_ERROR {

type IO_ERROR IOError code;
The operating system has reported an I/O failure. On Unix code is an

errno value.
type END_OF_STREAM EndOfStream;

An unexpected end of stream has been reached.
};

39

5.9.3 Resource errors

subtypes RESOURCE_ERROR {

type NOT_SUPPORTED NotSupported what;
A functionality described by what is not supported in the current envi-

ronment.
type OUT_OF_MEMORY OutOfMemory;

The program might soon run out of memory.
type STACK_OVERFLOW StackOverflow;

The current execution stack is too deep and might soon run out of mem-
ory.

type ARITHMETIC_OVERFLOW ArithmeticOverflow;
An arithmetic result is too big.

};

5.9.4 Exits

type PROGRAM_EXIT ProgramExit status;
A request to exit the program with the given status communicated to the

process which has started the program (an integer in the range 0 to 255;
often 0 indicates success and other values indicate errors).

subtypes EXIT {

type THREAD_EXIT ThreadExit;
A request to abort the current thread.

type THREAD_EXIT_AT_FORK_PROCESS ThreadExitAtForkProcess;
A request to abort the current thread because it should not exist in a

child process.
type THREAD_KICKED ThreadKicked;

The current thread was unreachable and has been kicked in order to finish
cleanly.

type THREAD_KILLED ThreadKilled;

40

The thread had to disappear in a child process for technical reasons; this
is an exception reported as the exception it failed with.

type SYSTEM_SIGNAL SystemSignal code;
Represents a signal sent between processes by the operating system. On

Unix code is the signal number.
};

5.10 Exiting the program

def ExitProgram [
() {again 0}
status {Fail (ProgramExit status)}

];
ExitProgram requests the program to exit by failing with a

PROGRAM_EXIT exception.
def ExitProgramNow [

() {again 0}
status {· · ·}

];
ExitProgramNow aborts the process without any cleanup.
When an exception leaves the toplevel of the program, some exception

types are treated specially:

• PROGRAM_EXIT sets the status code that the process will exit with.

• SYSTEM_SIGNAL interrupts the process by an operating system signal
given by the exception if possible.

Exceptions of other types are passed to the unhandled exception handler:
let AtUnhandledException = RegisteredList();

The first element of AtUnhandledException is removed and applied to the
exception. The handler should return an integer being the status to exit the
process with. If it fails, the next handler has a chance. At the end of the list
there is a default handler supplied by the implementation which presents the
exception to the user. It may also present a stack trace.

type SOURCE_LOC SourceLoc file row column context;

41

def StackTrace() {· · ·};
StackTrace extracts a trace of source locations of the called functions, if

supported by the implementation. This information is provided for debug-
ging purposes and may not be exact. StackTrace returns a list of events,
ordered chronologically, where every element has one of the following forms:

• loc:sourceLoc — this source location was visited; a source location is
represented by a value of the SOURCE_LOC type.

• exn:exception — execution failed with exception.

When the program completes, including a possible unhandled exception
handler, program exit handlers are executed with signals blocked:

let AtExit = RegisteredList();
While AtExit is not empty, the first element of AtExit is removed and

applied to no arguments. If it fails, the exception is ignored.

5.11 Numbers
5.11.1 Abstract types

Numeric types can have supertypes which indicate the domains of the num-
bers their objects represent. The supertypes allow for default implementa-
tions of various arithmetic operations, including arithmetic between numbers
of mixed types.

type NUMBER;
type COMPLEX is:NUMBER;
type REAL is:COMPLEX;
type RATIONAL is:REAL;
type INTEGER is:RATIONAL;
REAL includes also infinities of both signs, and COMPLEX includes also

numbers with an infinite real and/or imaginary part.

5.11.2 Integers

There is a standard type of integer numbers:
type INT is:INTEGER · · ·;

Note: Ints are not arbitrarily limited to the range of a machine word. 2

42

def Int x! opts... {};
method Int x^INT {x};

By convention, Int converts an object to an int or an exact infinity. If it
is a number, the real part of its value is truncated towards zero.

method Is x^INT y {· · ·};
method Hash x^INT {· · ·};

method ’==’ x^INT y^INT {x %Is y};
method ’<’ x^INT y^INT {· · ·};
method ’<=’ x^INT y^INT {· · ·};

method Min x^INT y^INT {if (y < x) {y} {x}};
method Max x^INT y^INT {if (y < x) {x} {y}};

Arithmetic operations below are also defined for some quantities which
are not numbers.

def ’+’ [
() {0}
x {x}
x! y! {}
x y zs... {’+’ (x+y) zs...}

];
method ’+’ x^INT y^INT {· · ·};

By convention, adds the arguments.
def ’−’ [

x! y! {}
y! {}

];
method ’−’ x^INT y^INT {· · ·};
method ’−’ y^INT {· · ·};

By convention, subtracts two numbers or negates one number.
def Abs x! {};
method Abs x^REAL {if (x < 0) {−x} {x}};

By convention, returns the absolute value or magnitude of a number.
def Signum x! {};
method Signum x^REAL {

if [
(x > 0) {1}

43

(x < 0) {−1}
_ {x}

]
};

By convention, projects a number to the unit circle, i.e. divides it by its
absolute value (except that Signum 0 == 0).

def ’*’ [
() {1}
x {x}
x! y! {}
x y zs... {’*’ (x*y) zs...}

];
method ’*’ x^INT y^INT {· · ·};

By convention, multiplies the arguments.
def Sqr x! {};
method Sqr x^COMPLEX {x * x};

By convention, squares a number.
def Quot x! y! {};
method Quot x^INT y^INT {· · ·};

def Rem x! y! {};
method Rem x^INT y^INT {· · ·};

def QuotRem [
x {x}
x! y! {}
x d ds... {

let (q, rs) = QuotRem x ds...;
let (q’, r’) = QuotRem q d;
q’, r’, rs

}
];
method QuotRem x^INT y^INT {x %Quot y, x %Rem y};

def Div x! y! {};
method Div x^INT y^INT {· · ·};

def Mod x! y! {};
method Mod x^INT y^INT {· · ·};

44

def DivMod [
x {x}
x! y! {}
x d ds... {

let (q, rs) = DivMod x ds...;
let (q’, r’) = DivMod q d;
q’, r’, rs

}
];
method DivMod x^INT y^INT {x %Div y, x %Mod y};

By convention, Quot and Div return the integer quotient of two real num-
bers, Rem and Mod return the remainder, and QuotRem and DivMod return
both as a pair.

QuotRem and DivMod are extended to an arbitrary nonzero number of
arguments, such that the first argument is divided by the second argument
(the integer quotient is returned), the remainder is returned by the next
argument (the integer quotient is returned) etc. The returned values are put
in a tuple.

Two rounding modes of integer division are provided: Quot, Rem, and
QuotRem round the quotient towards zero (the remainder has the sign of
the dividend), and Div, Mod, and DivMod round the quotient down (the
remainder has the sign of the divisor). Example:

Quot Rem Div Mod
123 10 12 3 12 3

−123 10 −12 −3 −13 7
123 −10 −12 3 −13 −7

−123 −10 12 −3 12 −3

def IsDivisible x! y! {};
method IsDivisible x^REAL y^REAL {x %Rem y == 0};

By convention, tests if the first real number is divisible by the second.
def IsEven x! {};
method IsEven x^INTEGER {x %Rem 2 == 0};
def IsOdd x {~IsEven x};

By convention, tests if an integer number is even or odd respectively.
def Floor [

x! {}
x! y! {}

45

];
method Floor x^REAL {x %Div 1};
method Floor x^REAL y^REAL {if (y == 0) {x} {x %Div y * y}};

def Ceiling [
x! {}
x! y! {}

];
method Ceiling x^REAL {−(−x) %Div 1};
method Ceiling x^REAL y^REAL {

if (y == 0) {x} {−(−x) %Div y * y}
};

def Trunc [
x! {}
x! y! {}

];
method Trunc x^REAL {x %Quot 1};
method Trunc x^REAL y^REAL {if (y == 0) {x} {x %Quot y * y}};

def Round [
x! {}
x! y! {}

];
method Round x^REAL {

let (q, r) = x %DivMod 1;
let rr = r * 2;
if (rr < 1 | rr == 1 & IsEven q) {q} {q + 1}

};
method Round x^REAL y^REAL {

if (y == 0) {x} ⇒
let y’ = Abs y;
let (q, r) = x %DivMod y’;
let rr = r * 2;
if (rr < y’ | rr == y’ & IsEven q) {q * y’} {(q + 1) * y’}

};

Each [Floor Ceiling Trunc Round] ?f {
method f x^INTEGER {x};

};
Four rounding functions of real numbers are provided. By convention,

Floor rounds down, Ceiling rounds up, Trunc rounds towards zero, and Round

46

rounds in whichever direction is closer, with the preference to the even quo-
tient in the case of a tie.

A single argument is rounded to an integer. With two arguments the
first argument is rounded to a multiple of the second one, except that if the
second argument is 0, the first is returned unchanged.

def GCD [
() {0}
x {x}
x! y! {}
x y zs... {GCD x y→GCD zs...}

];
method GCD x^RATIONAL y^RATIONAL {

loop x y [
a 0 {a}
a b {again b (a %Rem b)}

]→Abs
};

By convention, GCD returns the greatest common divisor of the argu-
ments.

For the purposes of bit operations, integers are represented in binary, in
the two’s complement convention with an infinite width for negative integers.

def BitNot x! {};
method BitNot x^INT {· · ·};

By convention, BitNot complements every bit of the argument.
def BitAnd [

() {−1}
x {x}
x! y! {}
x y zs... {BitAnd (x %BitAnd y) zs...}

];
method BitAnd x^INT y^INT {· · ·};

By convention, BitAnd returns the bitwise conjunction of the arguments.
def BitAndNot x! y! {};
method BitAndNot x^INTEGER y^INTEGER {x %BitAnd BitNot y};

By convention, ‘x %BitAndNot y’ is ‘x %BitAnd BitNot y’.
def BitOr [

() {0}

47

x {x}
x! y! {}
x y zs... {BitOr (x %BitOr y) zs...}

];
method BitOr x^INT y^INT {· · ·};

By convention, BitOr returns the bitwise disjunction of the arguments.
def BitXor x! y! {};
method BitXor x^INT y^INT {· · ·};

By convention, BitXor returns the bitwise exclusive disjunction of the
arguments.

def BitShift x! shift {};
method BitShift x^INT shift {· · ·};

By convention, ‘x→BitShift shift’ shifts x by the amount of bits specified
by shift: left if shift > 0 (zero bits are shifted in), or right if shift < 0 (the
bits shifted out are discarded).

def TestBit x! bit {};
method TestBit x^INT bit {(x %BitAnd 1→BitShift bit) ~%Is 0};

By convention, ‘x %TestBit bit’ returns True if the bit of x with the index
bit is 1.

def SetBit x! bit {};
method SetBit x^INT bit {x %BitOr 1→BitShift bit};

By convention, x %SetBit bit returns x changed by setting the bit with
the index bit to 1.

def ClearBit x! bit {};
method ClearBit x^INT bit {x %BitAndNot 1→BitShift bit};

By convention, ‘x %ClearBit bit’ returns x changed by setting the bit with
the index bit to 0.

def SizeInBits x! {};
method SizeInBits x^INT {· · ·};

By convention, ‘SizeInBits x’ returns the smallest number of bits
needed to represent x (0 for 0, and for negative numbers ‘SizeInBits x’ is
‘SizeInBits (BitNot x)’).

def CountBits x! {};
method CountBits x^INT {· · ·};

48

By convention, ‘CountBits x’ returns the count of set bits of x (Inf for
negative numbers).

def FindBit [
x absent {again x 0 absent Identity}
x (begin→HasType INT) absent {again x begin absent Identity}
x absent present {again x 0 absent present}
x! begin absent present {}

];
method FindBit x^INT begin absent present {· · ·};

By convention, ‘FindBit x begin absent present’ finds the index of the next
set bit of x, starting the search from begin (the found index is begin if this
bit is already set). It returns ‘present bit’ if the bit is found, or ‘absent()’
otherwise.
Each [

’==’ ’<’ ’<=’ Min Max ’+’ ’−’ ’*’ Quot Rem QuotRem Div Mod
DivMod BitAnd BitOr BitXor

] ?f {
method f x^INTEGER y^INTEGER {f (Int x) (Int y)};

};

Each [’−’ BitNot SizeInBits CountBits] ?f {
method f x^INTEGER {f (Int x)};

};

Each [BitShift TestBit SetBit ClearBit] ?f {
method f x^INTEGER bit {Int x→f bit};

};

method FindBit x^INTEGER begin absent present {
Int x0>FindBit beg8h absent present

};

5.11.3 Rationals

type RATIO is:RATIONAL (private RatioCon) num den {};
Ratios represent exact quotients num/den, where num and den are ints,

they have no nontrivial common divisors, and den > 1.

49

def Ratio x! opts... {};
method Ratio x^(INT,RATIO) {x};
method Ratio x^INTEGER {Int x};

By convention, Ratio converts an object to a ratio, an int, or an exact
infinity. If it is a number, the real part of its value is used.

method Int x^RATIO {x.num %Quot x.den};
method Int x^RATIONAL {Int (Ratio x)};

def Numerator x! {};
method Numerator x^INT {x};
method Numerator x^INTEGER {Int x};
method Numerator x^RATIO {x.num};
method Numerator x^RATIONAL {Numerator (Ratio x)};

def Denominator x! {};
method Denominator _^(INT,INTEGER) {1};
method Denominator x^RATIO {x.den};
method Denominator x^RATIONAL {Denominator (Ratio x)};

By convention, Numerator and Denominator return the numerator and
denominator of the given rational number, such that they have no nontrivial
common divisors, and the denominator is greater than 0.

def ’/’ [
x! y! {}
y! {}

];
By convention, ’/’ divides two numbers or returns the reciprocal of one

number.
method ’/’ x^INT y^INT {

if (y %Is 0) {Fail (ArithmeticError #’/’ [x 0])} ⇒
let (q, r) = x %QuotRem y;
if (r %Is 0) {q} ⇒
let d = GCD y r;
let num = x %Quot d;
let den = y %Quot d;
if (den > 0) {RatioCon num den} {RatioCon (−num) (−den)}

};
method ’/’ y^INT {

case y [
(1 | −1) {y}

50

0 {Fail (ArithmeticError #’/’ [0])}
_ {if (y > 0) {RatioCon 1 y} {RatioCon (−1) (−y)}}

]
};
method ’/’ x^INTEGER y^INTEGER {Int x / Int y};
method ’/’ y^INTEGER {/Int y};

Division of ints returns an int or a ratio, depending on whether the result
is a whole number.

method Is x^RATIO y {x.num %Is y.num & x.den %Is y.den};
method Hash x^RATIO {Hash x.num %CombineHash Hash x.den};

method ’==’ _^INT _^RATIO {False};
method ’==’ _^RATIO _^INT {False};
method ’==’ x^RATIO y^RATIO {x.num == y.num & x.den == y.den};

Each [’<’ ’<=’] ?f {
method f x^INT y^RATIO {f (x*y.den) y.num};
method f x^RATIO y^INT {f x.num (y*x.den)};
method f x^RATIO y^RATIO {f (x.num*y.den) (y.num*x.den)};

};

Each [’==’ ’<’ ’<=’] ?f {
method f x^REAL y^REAL {f (Ratio x) (Ratio y)};

};

method Min x^INT y^RATIO {if (y < x) {y} {x}};
method Max x^INT y^RATIO {if (y < x) {x} {y}};
method Min x^RATIO y^INT {if (y < x) {y} {x}};
method Max x^RATIO y^INT {if (y < x) {x} {y}};
method Min x^RATIO y^RATIO {if (y < x) {y} {x}};
method Max x^RATIO y^RATIO {if (y < x) {x} {y}};

method ’+’ x^INT y^RATIO {RatioCon (x * y.den + y.num) y.den};
method ’−’ x^INT y^RATIO {RatioCon (x * y.den − y.num) y.den};
method ’+’ x^RATIO y^INT {RatioCon (x.num + y * x.den) x.den};
method ’−’ x^RATIO y^INT {RatioCon (x.num − y * x.den) x.den};
method ’+’ x^RATIO y^RATIO {
(x.num * y.den + y.num * x.den) / (x.den * y.den)

};
method ’−’ x^RATIO y^RATIO {
(x.num * y.den − y.num * x.den) / (x.den * y.den)

};

51

method ’−’ y^RATIO {RatioCon (−y.num) y.den};

method ’*’ x^INT y^RATIO {(x * y.num) / y.den};
method ’/’ x^INT y^RATIO {(x * y.den) / y.num};
method ’*’ x^RATIO y^INT {(x.num * y) / x.den};
method ’/’ x^RATIO y^INT {x.num / (x.den * y)};
method ’*’ x^RATIO y^RATIO {(x.num * y.num) / (x.den * y.den)};
method ’/’ x^RATIO y^RATIO {(x.num * y.den) / (x.den * y.num)};

method ’/’ y^RATIO {
case y.num [

1 {y.den}
(−1) {−y.den}
(>0) {RatioCon y.den y.num}
_ {RatioCon (−y.den) (−y.num)}

}
};

method Quot x^INT y^RATIO {(x * y.den) %Quot y.num};
method Div x^INT y^RATIO {(x * y.den) %Div y.num};
method Quot x^RATIO y^INT {x.num %Quot (x.den * y)};
method Div x^RATIO y^INT {x.num %Div (x.den * y)};
method Quot x^RATIO y^RATIO {(x.num * y.den) %Quot (x.den * y.num)};
method Div x^RATIO y^RATIO {(x.num * y.den) %Div (x.den * y.num)};

method Rem x^INT y^RATIO {((x * y.den) %Rem y.num) / y.den};
method Mod x^INT y^RATIO {((x * y.den) %Mod y.num) / y.den};
method Rem x^RATIO y^INT {(x.num %Rem (x.den * y)) / x.den};
method Mod x^RATIO y^INT {(x.num %Mod (x.den * y)) / x.den};
method Rem x^RATIO y^RATIO {
((x.num * y.den) %Rem (x.den * y.num)) / (x.den * y.den)

};
method Mod x^RATIO y^RATIO {

((x.num * y.den) %Mod (x.den * y.num)) / (x.den * y.den)
};

method QuotRem x^INT y^RATIO {
let (q, r) = (x * y.den) %QuotRem y.num;
q, r / y.den

};
method DivMod x^INT y^RATIO {

let (q, r) = (x * y.den) %DivMod y.num;

52

q, r / y.den
};
method QuotRem x^RATIO y^INT {

let (q, r) = x.num %QuotRem (x.den * y);
q, r / x.den

};
method DivMod x^RATIO y^INT {

let (q, r) = x.num %DivMod (x.den * y);
q, r / x.den

};
method QuotRem x^RATIO y^RATIO {

let (q, r) = (x.num * y.den) %QuotRem (x.den * y.num);
q, r / (x.den * y.den)

};
method DivMod x^RATIO y^RATIO {

let (q, r) = (x.num * y.den) %DivMod (x.den * y.num);
q, r / (x.den * y.den)

};

method Floor x^RATIO {x.num %Div x.den};
method Ceiling x^RATIO {−(−x.num) %Div x.den};
method Trunc x^RATIO {x.num %Quot x.den};
method Round x^RATIO {

let (q, r) = x.num %DivMod x.den;
let rr = r * 2;
if (rr < xden | rr == xden & IsEven q) {q} {q + 1}

};

Each [Min Max ’+’ ’−’ ’*’ ’/’ Quot Rem QuotRem Div Mod DivMod] ?f {
method f x^INTEGER y^RATIO {f (Int x) y};
method f x^RATIO y^INTEGER {f x (Int y)};
method f x^RATIONAL y^RATIONAL {f (Ratio x) (Ratio y)};

};

Each [’−’ ’/’] ?f {
method f y^RATIONAL {f (Ratio y)};

};

// The algorithm for Rationalize is based on ratize.scm in SLIB.
private def FindRatio a b {

let f = Floor a;
let n = Int f;

53

if [
(f == a) {n, 1}
(f < Floor b) {n+1, 1}
_ {

let (x, y) = FindRatio (/(b−f)) (/(a−f));
y+n*x, x

}
]

};
private def RatioBetween a b {

if [
(a > 0) {let (x, y) = FindRatio a b; x / y}
(b < 0) {let (x, y) = FindRatio (−b) (−a); −x / y}
_ {0}

]
};
def Rationalize x e {

let a = x − e;
let b = x + e;
if [

(a < b) {RatioBetween a b}
(a == b) {Ratio a}
_ {RatioBetween b a}

]
};

‘Rationalize x e’ finds the simplest rational number close to x, with the
maximum error of e.

5.11.4 Infinities

type INF is:REAL Inf;
type NEG_INF is:REAL NegInf;

There are two exact infinities: positive Inf and negative NegInf. Inf is
considered larger than any other object, and NegInf is smaller than any other
object.

method ’==’ _^INF _^INF {True};
method ’==’ _^INF _^(NEG_INF,REAL,OBJECT) {False};
method ’==’ _^NEG_INF _^(INF,REAL,OBJECT) {False};
method ’==’ _^NEG_INF _^NEG_INF {True};
method ’==’ _^(REAL,OBJECT) _^(INF,NEG_INF) {False};

54

method ’<’ _^INF _^(INF,NEG_INF,REAL,OBJECT) {False};
method ’<’ _^NEG_INF _^(INF,REAL,OBJECT) {True};
method ’<’ _^NEG_INF _^NEG_INF {False};
method ’<’ _^(REAL,OBJECT) _^INF {True};
method ’<’ _^(REAL,OBJECT) _^NEG_INF {False};

method ’<=’ _^INF _^INF {True};
method ’<=’ _^INF _^(NEG_INF,REAL,OBJECT) {False};
method ’<=’ _^NEG_INF _^(INF,NEG_INF,REAL,OBJECT) {True};
method ’<=’ _^(REAL,OBJECT) _^INF {True};
method ’<=’ _^(REAL,OBJECT) _^NEG_INF {False};

Note: Separate methods specialized for REAL in addition to OBJECT are needed to
make them preferred over methods with two arguments of type REAL which are defined
elsewhere. 2

method Min _^INF y^(INF,NEG_INF,REAL,OBJECT) {y};
method Min _^NEG_INF _^(INF,NEG_INF,REAL,OBJECT) {NegInf};
method Min x^(REAL,OBJECT) _^INF {x};
method Min _^(REAL,OBJECT) _^NEG_INF {NegInf};

method Max _^INF _^(INF,NEG_INF,REAL,OBJECT) {Inf};
method Max _^NEG_INF y^(INF,NEG_INF,REAL,OBJECT) {y};
method Max _^(REAL,OBJECT) _^INF {Inf};
method Max x^(REAL,OBJECT) _^NEG_INF {x};

method Int x^(INF,NEG_INF) {x};
method Ratio x^(INF,NEG_INF) {x};

method ’+’ x^INF _^(INF,REAL) {x};
method ’+’ x^INF y^NEG_INF {Fail (ArithmeticError #’+’ [x y])};
method ’+’ x^NEG_INF _^(NEG_INF,REAL) {x};
method ’+’ x^NEG_INF y^INF {Fail (ArithmeticError #’+’ [x y])};
method ’+’ _^REAL y^(INF,NEG_INF) {y};

method ’−’ x^INF y^INF {Fail (ArithmeticError #’−’ [x y])};
method ’−’ x^INF _^(NEG_INF,REAL) {x};
method ’−’ x^NEG_INF _^(INF,REAL) {x};
method ’−’ x^NEG_INF y^NEG_INF {Fail (ArithmeticError #’−’ [x y])};
method ’−’ _^REAL y^(INF,NEG_INF) {−y};

method ’−’ _^INF {NegInf};
method ’−’ _^NEG_INF {Inf};

55

method ’*’ _^INF y^(INF,NEG_INF) {y};
method ’*’ _^NEG_INF y^(INF,NEG_INF) {−y};
method ’*’ x^(INF,NEG_INF) y^REAL {

if [
(y > 0) {x}
(y < 0) {−x}
_ {Fail (ArithmeticError #’*’ [x y])}

]
};
method ’*’ x^REAL y^(INF,NEG_INF) {

if [
(x > 0) {y}
(x < 0) {−y}
_ {Fail (ArithmeticError #’*’ [x y])}

]
};

method Quot x^(INF,NEG_INF) y^(INF,NEG_INF) {
Fail (ArithmeticError #Quot [x y])

};
method Quot x^(INF,NEG_INF) y^REAL {

if [
(y > 0) {x}
(y < 0) {−x}
_ {Fail (ArithmeticError #Quot [x y])}

]
};
method Quot _^REAL _^(INF,NEG_INF) {0};

method Rem x^(INF,NEG_INF) y^(INF,NEG_INF,REAL) {
Fail (ArithmeticError #Rem [x y])

};
method Rem x^REAL _^(INF,NEG_INF) {x};

method QuotRem x^(INF,NEG_INF) y^(INF,NEG_INF,REAL) {
Fail (ArithmeticError #QuotRem [x y])

};
method QuotRem x^REAL _^(INF,NEG_INF) {0, x};

method Div x^(INF,NEG_INF) y^(INF,NEG_INF) {
Fail (ArithmeticError #Div [x y])

};

56

method Div x^(INF,NEG_INF) y^REAL {
if [

(y > 0) {x}
(y < 0) {−x}
_ {Fail (ArithmeticError #Div [x y])}

]
};
method Div x^REAL _^INF {if (x < 0) {−1} {0}};
method Div x^REAL _^NEG_INF {if (x > 0) {−1} {0}};

method Mod x^(INF,NEG_INF) y^(INF,NEG_INF,REAL) {
Fail (ArithmeticError #Mod [x y])

};
method Mod x^REAL _^INF {if (x < 0) {Inf} {x}};
method Mod x^REAL _^NEG_INF {if (x > 0) {NegInf} {x}};

method DivMod x^(INF,NEG_INF) y^(INF,NEG_INF,REAL) {
Fail (ArithmeticError #DivMod [x y])

};
method DivMod x^REAL _^INF {

if (x < 0) {−1, Inf} {0, x}
};
method DivMod x^REAL _^NEG_INF {

if (x > 0) {−1, NegInf} {0, x}
};

method IsDivisible x^(INF,NEG_INF) y^(INF,NEG_INF,REAL) {
Fail (ArithmeticError #IsDivisible [x y])

};
method IsDivisible x^REAL _^(INF,NEG_INF) {x == 0};

method Floor x^(INF,NEG_INF) {x};
method Floor x^(INF,NEG_INF) _^REAL {x};

method Ceiling x^(INF,NEG_INF) {x};
method Ceiling x^(INF,NEG_INF) _^REAL {x};

method Trunc x^(INF,NEG_INF) {x};
method Trunc x^(INF,NEG_INF) _^REAL {x};

method Round x^(INF,NEG_INF) {x};
method Round x^(INF,NEG_INF) _^REAL {x};

57

method ’/’ x^(INF,NEG_INF) y^(INF,NEG_INF) {
Fail (ArithmeticError #’/’ [x y])

};
method ’/’ x^(INF,NEG_INF) y^REAL {

if [
(y > 0) {x}
(y < 0) {−x}
_ {Fail (ArithmeticError #’/’ [x y])}

]
};
method ’/’ _^REAL _^(INF,NEG_INF) {0};

method ’/’ _^(INF,NEG_INF) {0};

5.11.5 Floats

type FLOAT is:REAL · · ·;
Floats represent numbers in some IEEE binary floating point format.

def IsFinite x! {};
method IsFinite _^(INT,RATIO) {True};
method IsFinite _^(INF,NEG_INF) {False};
method IsFinite x^FLOAT {· · ·};
IsFinite tests if a real number is finite, i.e. not an infinity and not a NaN.

def IsInfinite x! {};
method IsInfinite _^(INT,RATIO) {False};
method IsInfinite _^(INF,NEG_INF) {True};
method IsInfinite x^FLOAT {· · ·};
IsInfinite tests if a real number is an infinity.

def IsNaN x! {};
method IsNaN _^(INT,RATIO,INF,NEG_INF) {False};
method IsNaN x^FLOAT {· · ·};
IsInfinite tests if a real number is a NaN.

def SignBit x! {};
method SignBit x^INT {x < 0};
method SignBit x^RATIO {x.num < 0};
method SignBit _^INF {False};

58

method SignBit _^NEG_INF {True};
method SignBit x^FLOAT {· · ·};
SignBit tests if a real number is negative, where 0 and 0.0 are considered

nonnegative, and −0.0 is considered negative.
def Float x! opts... {};
method Float x^INT {· · ·};
method Float x^INTEGER {Float (Int x)};
method Float x^RATIO {· · ·};
method Float x^RATIONAL {Float (DefaultRational x)};
method Float _^INF {· · ·};
method Float _^NEG_INF {· · ·};
method Float _^NULL {· · ·};
method Float x^FLOAT {x};

By convention, Float converts an object to a float. If it is a number, the
real part of its value is used. ‘Float Null’ is NaN.

dynamic DefaultReal = Float;
DefaultReal stores a numeric conversion function, which is used by certain

operations in order to choose the representation of a real number. In partic-
ular it specifies the type of literals with a decimal point, and the type used
to perform certain arithmetic operations which are not explicitly defined for
the given combination of types of arguments.

method Int x^FLOAT {· · ·};
method Int x^REAL {Int (DefaultReal x)};
Int for non-finite numbers returns Inf, NegInf, or Null.

method Ratio x^FLOAT {· · ·};
method Ratio x^REAL {Ratio (DefaultReal x)};
Ratio for non-finite numbers returns Inf, NegInf, or Null.

def DecodeFloat x! {};
method DecodeFloat x^FLOAT {· · ·};

‘DecodeFloat x’ converts a number x to a triple sign, mant, exp, where sign
is a bool, mant is an int, and exp is an int or Inf, such that x is equal to mant
times 2 to the power of exp, negated if sign is True.

If x is zero, mant is 0 and exp is −Inf. If x is infinite, mant is positive and
exp is Inf. If x is NaN, mant is 0 and exp is Inf.

def ScaleReal x! exp {};
method ScaleReal x^FLOAT exp {· · ·};
method ScaleReal x^REAL exp {ScaleReal (DefaultReal x) exp};

59

‘ScaleReal mant exp’ multiplies a real number mant by 2 to the power of
exp, which must be an int, Inf, or −Inf.

If exp is Inf, the result is infinity with the sign of mant, or NaN if mant is
0.

method Is x^FLOAT y {· · ·};
method Hash x^FLOAT {· · ·};

method ’==’ x^FLOAT y^FLOAT {· · ·};
method ’<’ x^FLOAT y^FLOAT {· · ·};
method ’<=’ x^FLOAT y^FLOAT {· · ·};

Each [’==’ ’<’ ’<=’] ?f {
method f x^INT y^FLOAT {~IsNaN y & f x (Ratio y)};
method f x^FLOAT y^INT {~IsNaN x & f (Ratio x) y};
method f x^INTEGER y^FLOAT {f (Int x) y};
method f x^FLOAT y^INTEGER {f x (Int y)};
method f x^RATIO y^FLOAT {~IsNaN y & f x (Ratio y)};
method f x^FLOAT y^RATIO {~IsNan x & f (Ratio x) y};
method f x^RATIONAL y^FLOAT {f (DefaultRational x) y};
method f x^FLOAT y^RATIONAL {f x (DefaultRational y)};

};

method Min x^INT y^FLOAT {· · ·};
method Max x^INT y^FLOAT {· · ·};
method Min x^FLOAT y^INT {· · ·};
method Max x^FLOAT y^INT {· · ·};
method Min x^FLOAT y^FLOAT {· · ·};
method Max x^FLOAT y^FLOAT {· · ·};

method ’+’ x^INT y^FLOAT {· · ·};
method ’−’ x^INT y^FLOAT {· · ·};
method ’+’ x^FLOAT y^INT {· · ·};
method ’−’ x^FLOAT y^INT {· · ·};
method ’+’ x^FLOAT y^FLOAT {· · ·};
method ’−’ x^FLOAT y^FLOAT {· · ·};

method ’−’ y^FLOAT {· · ·};
method Abs x^FLOAT {if (SignBit x) {−x} {x}};
method Signum x^FLOAT {· · ·};

method ’*’ x^INT y^FLOAT {· · ·};
method ’/’ x^INT y^FLOAT {· · ·};

60

method ’*’ x^FLOAT y^INT {· · ·};
method ’/’ x^FLOAT y^INT {

if (y %Is 0) {Fail (ArithmeticError #’/’ [x 0])} ⇒
· · ·

};
method ’*’ x^FLOAT y^FLOAT {· · ·};
method ’/’ x^FLOAT y^FLOAT {· · ·};

qqlindexmet/INF
method ’/’ _^INF y^FLOAT {

if [
(IsNaN y) {Float Null}
(SignBit y) {Float NegInf}
_ {Float Inf}

]
};
method ’/’ _^NEG_INF y^FLOAT {

if [
(IsNaN y) {Float Null}
(SignBit y) {Float Inf}
_ {Float NegInf}

]
};

method ’/’ y^FLOAT {· · ·};

method Quot x^INT y^FLOAT {· · ·};
method Quot x^FLOAT y^INT {

if (y %Is 0) {Fail (ArithmeticError #Quot [x 0])} ⇒
· · ·

};
method Quot x^(INF,NEG_INF) y^FLOAT {x/y};
method Quot x^FLOAT y^FLOAT {· · ·};

method Rem x^INT y^FLOAT {· · ·};
method Rem x^FLOAT y^INT {

if (y %Is 0) {Fail (ArithmeticError #Rem [x 0])} ⇒
· · ·

};
method Rem x^FLOAT y^FLOAT {· · ·};

61

method QuotRem x^INT y^FLOAT {· · ·};
method QuotRem x^FLOAT y^INT {

if (y %Is 0) {Fail (ArithmeticError #QuotRem [x 0])} ⇒
· · ·

};
method QuotRem x^FLOAT y^FLOAT {· · ·};

method Div x^INT y^FLOAT {· · ·};
method Div x^FLOAT y^INT {

if (y %Is 0) {Fail (ArithmeticError #Div [x 0])} ⇒
· · ·

};
method Div x^(INF,NEG_INF) y^FLOAT {x/y};
method Div x^FLOAT y^FLOAT {· · ·};

method Mod x^INT y^FLOAT {· · ·];
method Mod x^FLOAT y^INT {

if (y %Is 0) {Fail (ArithmeticError #Mod [x 0])} ⇒
· · ·

};
method Mod x^FLOAT y^FLOAT {· · ·};

method DivMod x^INT y^FLOAT {· · ·};
method DivMod x^FLOAT y^INT {

if (y %Is 0) {Fail (ArithmeticError #DivMod [x 0])} ⇒
· · ·

};
method DivMod x^FLOAT y^FLOAT {· · ·};

method Floor x^FLOAT {· · ·};
method Floor x^FLOAT y^FLOAT {· · ·};

method Ceiling x^FLOAT {· · ·};
method Ceiling x^FLOAT y^FLOAT {· · ·};

method Trunc x^FLOAT {· · ·};
method Trunc x^FLOAT y^FLOAT {· · ·};

method Round x^FLOAT {· · ·};
method Round x^FLOAT y^FLOAT {· · ·};

62

Each [Min Max ’+’ ’−’ ’*’ ’/’ Quot Rem QuotRem Div Mod DivMod] ?f {
method f x^INTEGER y^FLOAT {f (Int x) y};
method f x^FLOAT y^INTEGER {f x (Int y)};
method f x^RATIONAL y^FLOAT {f (Float x) y};
method f x^FLOAT y^RATIONAL {f x (Float y)};
method f x^REAL y^REAL {let real = DefaultReal; f (real x) (real y)};

};

Each [’−’ ’/’] ?f {
method f y^REAL {f (DefaultReal y)};

};

5.12 Characters
TODO

5.13 Pairs
A generic record type with two fields:

type PAIR (private Pair) left right;
The pair constructor is private because it is available through the ‘,’

syntax and the ’,’ function.
def ’,’ [

() {Null}
x {x}
x xs... {Pair x (again xs...)}

];
’,’ returns a tupletuple of an arbitrary number of elements, expressed as

a structure of nested pairs, where the right element of every pair except the
last one is the next pair. A tuple of one element is the element itself, and a
tuple of no elements is Null.

Note: Tuples are primarily used when the number of elements is known. A tuple may
also be used to hold an unknown number of elements if the elements are known to not be
tuples themselves; this is sometimes used instead of putting them in a list when the most
common case is a single element. 2

method ’==’ (left1, right1)^PAIR (left2, right2)^PAIR {
left1 == left2 & right1 == right2

};
method ’<’ (left1, right1)^PAIR (left2, right2)^PAIR {

63

if (left1 ~= left2) {left1 < left2} {right1 < right2}
};
method ’<=’ (left1, right1)^PAIR (left2, right2)^PAIR {

if (left1 ~= left2) {left1 < left2} {right1 <= right2}
};

5.14 Symbols
Symbols are similar to strings, with different performance properties. A
symbol has a name which is a string. Symbols are used instead of strings
when it is more important to distinguish them from one another than to
examine the particular character sequences used to spell their names. In
particular symbols are used to access fields of objects.

Symbols can be public or private. The difference is that there can be
only one public symbol with the given name, which can be obtained from
the name.

type SYMBOL · · ·;
A symbol has the following fields:

• name — the name of the symbol, which is a string

• hash — the hash of the symbol, returned by Hash

• public — whether the symbol is public

method Is _^SYMBOL _ {False};
method Hash sym^SYMBOL {sym.hash};
method String sym^SYMBOL {sym.name};

def Symbol (name→ofType STRING) {· · ·};
def PrivateSymbol (name→ofType STRING) {· · ·};

‘Symbol name’ returns the public symbol with the given name. The same
symbol is returned each time for the same name.

‘PrivateSymbol name’ returns a new private symbol with the given name.
It is distinct from all other symbols existing so far.

5.15 Types

type TYPE · · ·;

64

A type has the following fields:

• name — the symbol of the type, for informational purposes (it is not
necessarily unique).

• hash — an integer for hashing.

• supertypes — a list of direct supertypes.

def Type object {· · ·};
‘Type object’ is the type of object.

method Is _^TYPE _ {False};
method Hash type^TYPE {type.hash};

def AllSupertypes type {· · ·};
‘AllSupertypes type’ returns the supertype list of type, excluding type itself.

def IsSubtype sub super {
if (Type sub ~%Is TYPE) {Fail (BadType sub TYPE)};
if (Type super ~%Is TYPE) {Fail (BadType super TYPE)};
sub %Is super | super→IsIn (AllSupertypes sub)

};
‘sub %IsSubtype super’ tests if sub is a subtype of super.

def HasType object types... {
Some types (IsSubtype (Type object) _)

};
‘object→HasType types...’ tests if object has type T for any T belonging

to types.
def DeclareSupertype [

sub super {· · ·}
sub super before {· · ·}

];
‘DeclareSupertype sub super’ adds super as a direct supertype of sub, at

the last position. ‘DeclareSupertype sub super before’ adds super as a direct
supertype of sub, at the position before the first occurrence of before, which
must already have been a supertype of sub, otherwise DeclareSupertype fails
with ‘NotSupertype sub before’.

An attempt to declare a supertype of OBJECT fails with TopSupertype.

65

Declaring a supertype of T changes the supertype lists of subtypes of
T . This may make some of the supertype lists inconsistent, which hap-
pens when two supertypes of T ′ yield conflicting orders of some further su-
pertypes. The conflict does not have to be detected immediately. Com-
puting the supertype list of a type with inconsistent supertypes fails with
‘InconsistentSupertypes type’.

def NewType name supertypes {· · ·};
‘NewType name supertypes’ creates a new type with the given name (a

symbol) and supertypes being the initial direct supertype list. It returns a
pair of the new type and a function which wraps any object in an object of
the new type, preserving its behavior when it is applied to arguments.

5.16 Mutable Variables
The type of mutable variables:

type VAR · · ·;

5.17 Dynamic variables
The type of dynamic variables:

type DYNAMIC · · ·;
An initially unbound dynamic variable created with ‘dynamic name’ is

associated with the symbol of name, which appears in the exception thrown
when the variable is accessed without being bound. It is also possible to
create an initially unbound dynamic variable with the symbol known dy-
namically:

def NewDynamic name {· · ·};
A bound dynamic variable created with ‘dynamic name = value’ is not

associated with any symbol, and thus a function for creating such variable is
not provided.

The function:
def AttachDynamic fun {· · ·};

saves the current dynamic environment and returns a function which behaves
like fun, except that it is executed in the saved dynamic enviromnent, ignoring
the dynamic environment of its caller.

66

5.18 Lazy variables
The type of lazy variables:

type LAZY · · ·;
During computation of the value of a lazy variable, BlockSignals is applied.

Waiting for a lazy variable to have its value computed by another thread is
not a signal handling point.

5.19 Forward variables
The type of forward variables:

type FORWARD · · ·;
A forward variable created with ‘forward name’ is associated with the

symbol of name, which appears in the exception thrown when the variable
is accessed before being set. It is also possible to create a forward variable
with the symbol known dynamically:

def NewForward name {· · ·};

5.20 Functions
Named functions are produced by def and type (as the constructor in the lat-
ter case). Unnamed functions are produced by ‘?’, function, loop, method,
partial application, and other constructs.

type FUNCTION {
type NAMED_FUNCTION final:True · · ·;
type UNNAMED_FUNCTION final:True · · ·;

};

method Is _^(NAMED_FUNCTION,UNNAMED_FUNCTION) _ {False};

def FunctionName fun {· · ·};
‘FunctionName fun’ returns the name of fun if it is a named function, and

Null otherwise.
def GenericCase arity keys {· · ·};
def ApplyGenericCase fun generic args {· · ·};
def NamedFunction [

name fun {· · ·}
name fun generics {· · ·}

67

];
def UnnamedFunction fun {· · ·};
def DefineMethod fun arity keys types method {· · ·};
def DefineMethodSuper fun arity keys types methodFun {· · ·};

TODO

5.21 Singletons
Singleton types have an implicit supertype and an implicitly defined method
of SingletonName. See section 4.3.6 on page 29 for details.

type SINGLETON;

def SingletonName obj! {};

method Hash obj^SINGLETON {(Type obj).hash};

5.22 Records
Record types have an implicit supertype and implicitly defined methods of
RecordConstructor and RecordFields. See section 4.3.6 on page 29 for details.

type RECORD;

def RecordConstructor obj! {};
def RecordFields obj! {};

method Is x^RECORD y {
loop (RecordFields x) [

(field\fields) {x field %Is y field & again fields}
[] {True}

]
};

method Hash obj^RECORD {
loop (Type obj).hash (RecordFields obj) [

acc (field\fields) {again (acc %CombineHash Hash (obj field)) fields}
acc [] {acc}

]
};

By convention, ‘Change obj changes...’, where changes is a list of
(field, value) pairs, returns a similar object as obj, except that the listed
fields have the given values. Change is primarily supported by record types.

68

def Change obj! changes... {};

method Change obj^RECORD changes... {
let (fields→ofType LIST) = RecordFields obj;
(RecordConstructor obj)

(changes→Fold (fields→Map (obj _)) ?values (field, value) {
loop values fields [

(v\vs) (f\fs) {
if (f %IsSame field) {value \ vs} {v \ again vs fs}

}
[] [] {

Fail (if (field→HasType SYMBOL) {NoField obj field}
{NotAFunction obj})

}
]

})...
};

5.23 Modules
TODO

5.24 Keywords
TODO

5.25 Time
A simple representation of the point in time as the number of ticks since the
epoch is used for internal time measurements and computing delays. For a
human-oriented representation of calendar dates, see section 7 on page 95.

type TIME (private TimeCon) ticks {};
let TicksPerSecond = 1000000000;

Ticks of a time are nanoseconds since 1970-01-01 00:00:00 UTC.
Note: In theory they should include leap seconds, but since Unix treats leap seconds

by adjusting the speed of its internal timer, in practice the time might not include leap
seconds. 2

method Is time1^TIME time2 {time1.ticks %Is time2.ticks};
method Hash time^TIME {Hash time.ticks};

69

method ’==’ time1^TIME time2^TIME {time1.ticks == time2.ticks};
method ’<’ time1^TIME time2^TIME {time1.ticks < time2.ticks};
method ’<=’ time1^TIME time2^TIME {time1.ticks <= time2.ticks};

method ’+’ time^TIME seconds^REAL {
let (ticks→ofType INT) = time.ticks + Int (seconds * TicksPerSecond);
TimeCon ticks

};
method ’−’ time^TIME seconds^REAL {

let (ticks→ofType INT) = time.ticks − Int (seconds * TicksPerSecond);
TimeCon ticks

};
method ’−’ time1^TIME time2^TIME {

(time1.ticks − time2.ticks) / TicksPerSecond
};

Time supports adjustment by addition or subtraction of the number of
seconds, represented by a real number. The difference between two times is
the number of seconds, represented by a ratio or int.

def Time [
() {TimeCon (· · ·)}
time! {}

];
Time() returns the current time. By convention, Time time converts time

from another representation to type TIME.
method Time ticks^INT {TimeCon ticks};
Time can convert the number of ticks since epoch to a time.

def AbsoluteTime timeout! {};
method AbsoluteTime time^TIME {time};
method AbsoluteTime seconds^REAL {Time() + seconds};

By convention, AbsoluteTime timeout converts a possibly relative time to
the corresponding absolute time of type TIME. If timeout has type TIME, it
is returned unchanged. If it has type REAL, it is treated as the number of
seconds since now.

5.26 Signals
A signal is a value sent to a thread by another thread or from outside of
the program. The thread reacts to a signal by applying its signal handler to

70

the signal value, and resuming normal execution if the handler succeeded, or
propagating the exception if it failed. This reaction can happen immediately,
or it can be delayed until the thread reaches a convenient point, depending
on the signal blocking state of the thread.

The blocking state of a thread is encoded as a pair (all, async), where
all is the number of reasons why all signals should be blocked, and async is
the number of reasons why signals should be blocked in regions other than
signal handling points.

This infinite space of states yields only three different direct effects on
the reaction to signals:

(0, 0) signals can be handled at any time (the default)
(0, > 0) signals are handled only in signal handling points
(> 0, _) signals are blocked

The following primitives cover useful transitions of the blocking state:
BlockSignals all = all + 1
UnblockSignals all = all − 1
BlockAsyncSignals async = async+ 1
UnblockAsyncSignals async = async− 1
BlockSyncSignals all = all + 1; async = async− 1
UnblockSyncSignals all = all − 1; async = async+ 1

They are scoped, in the sense that they take body as an argument, and
they change the blocking state as specified during evaluation of ‘body()’,
restoring it afterwards. Trying to make all or async negative is an error.

The signal handler itself is executed with signals blocked.
def DefaultSignalHandler signal! {};
method DefaultSignalHandler signal {Fail signal};
method DefaultSignalHandler signal^SYSTEM_SIGNAL {· · ·};

dynamic Signal = DefaultSignalHandler;
The DefaultSignalHandler method of SYSTEM_SIGNAL emulates the op-

erating system’s default reaction to a system signal.
The current signal handler is stored in a dynamic variable Signal.

5.27 Bracketing resource usage
A common pattern of dealing with a resource which requires or recommends
explicit freeing, is to bracket a piece of code with an action which obtains
the resource at the beginning, and an action which frees it at the end. The
closing action is executed no matter whether the main body succeeds or fails.

71

def Using [
obtain body {again obtain Close Close body}
obtain release body {again obtain release release body}
obtain commit rollback body {

BlockSignals ⇒
let resource = UnblockSyncSignals obtain;
try {

UnblockSignals ⇒
body resource

} exn {
rollback resource;
Fail exn

} ?result {
commit resource;
result

}
}

];

def Ensure [
release body {again {} release release body}
obtain release body {again obtain release release body}
obtain commit rollback body {

BlockSignals ⇒
UnblockSyncSignals obtain;
try {

UnblockSignals body
} exn {

rollback();
Fail exn

} ?result {
commit();
result

}
}

];
Using is used for resources represented by objects. In Ensure the resource is

not materialized as an object, but is implicit in state changes by the provided
actions.

The obtain part is executed in synchronous mode. The release part is
executed with signals blocked. The body part is executed with the same

72

signal blocking state as outside the whole construct.

5.28 Mutexes
A mutex allows to guard related concurrent operations, so that if a thread
has to temporarily violate invariants of a data structure in order to update
it, other threads do not observe this structure at an inappropriate time.

type MUTEX Mutex() {· · ·};

def Lock mutex body {· · ·};
def Unlock mutex body {· · ·};
def LockRead mutex body {· · ·};
def UnlockRead mutex body {· · ·};
def LockUpdate mutex body {· · ·};
def UnlockUpdate mutex body {· · ·};
def LockWriteUpdating mutex body {· · ·};
def UnlockWriteUpdating mutex body {· · ·};

A mutex is either unlocked, or locked for writing by a thread, or locked for
reading by some threads, or locked for updating by a thread and at the same
time possibly locked for reading by some threads. A thread which has locked
a mutex for updating can upgrade the lock to writing without unlocking it;
conversely, a thread which has locked a mutex for writing can downgrade it
to updating.

The mutex ensures that the constraints above are met by letting a thread
wait if it attempts to perform an operation on a mutex which would violate
the constraints if done immediately.

If a thread already has locked the mutex in a way which conflicts with the
currently attempted operation, the operation fails with RecursiveLock instead
of futile waiting.

A read lock is not granted if some thread is waiting for a write lock and
the calling thread does not already have a read lock, even if only read locks
are currently held. This avoids starvation of writers by multiple readers.

All locking and unlocking operations are scoped: they change the state
of the mutex, execute the body of the operation, and change the state of the
mutex in the opposite way.

An attempt to unlock, upgrade, or downgrade a mutex which is not locked
by the current thread in the appropriate mode fails with LockNotLocked.

Locking operations apply BlockSignals during execution of the body, and
unlocking operations apply UnblockSignals. Upgrading and downgrading do

73

not change the signal blocking state but require signals to be blocked. These
operations are not signal handling points.

While a thread is waiting for a lock after completing the body of a an
unlocking operation, if a signal is handled and the signal handler fails, the
thread continues to wait for the lock with signals blocked, and propagates
the exception from the signal handler after it obtains the lock.

5.29 Materialized object identity
For any object, an associated object id can be obtained, which provides
equality, hashing, and ordering of the identity of the original object.

type OBJECT_ID · · ·;
method Is _^OBJECT_ID _ {False};
method Hash id^OBJECT_ID {· · ·};
method ’==’ id1^OBJECT_ID id2^OBJECT_ID {id1 %IsSame id2};
method ’<’ id1^OBJECT_ID id2^OBJECT_ID {· · ·};
method ’<=’ id1^OBJECT_ID id2^OBJECT_ID {· · ·};

def ObjectId [
() {· · ·}
key {· · ·}

];
‘ObjectId key’ returns the object id associated with key. Each application

of ObjectId to the same key returns the same object id, as long as the previous
object id is alive. An object id is not kept alive by its key.

Object ids are hashable and ordered. Ordering between object ids is
arbitrary but consistent. If an object id dies and another object id is created
for the same key, the hash and the ordering of the new object id are not
necessarily the same as previously.

‘ObjectId()’ returns a new object id not associated with any key.

5.30 Weak references
A weak reference allows to refer to an object in a way which does not keep
it alive.

type DEAD_WEAK_REFS DeadWeakRefs() {· · ·};

type WEAK_REF · · ·;
def WeakRef [

key {WeakPair key key}

74

key dead data... {WeakPair key key dead data...}
];
def WeakPair [

key value {· · ·}
key value dead data... {· · ·}

];

def EachDeadWeakRef dead body {· · ·};
A dead-weak-refs is a collection of dead weak references. Initially it is

empty.
WeakPair returns a new weak reference with the given key and value, which

maintains the following association: as long as the weak reference and key
are alive, value is kept alive too. A weak reference by itself does not keep its
key nor value alive.

WeakRef is a variant of WeakPair where key and value are the same.
For a given weakRef being a weak reference, ‘weakRef absent present’

enters ‘present value’ if the association is active, or ‘absent()’ otherwise.
‘weakRef absent’ means ‘weakRef absent Identity’, and ‘weakRef()’ means
‘weakRef {Null}’.

A weak reference is also optionally associated with a dead-weak-refs and
some data. If the key dies before its weak reference dies, and there is an
associated dead-weak-refs, the weak reference is added to the dead-weak-
refs.

‘EachDeadWeakRef dead body’ for a dead being a dead-weak-refs, for each
contained weakRef with data, executes ‘body weakRef data...’ and ignores the
result.

Rationale: EachDeadWeakRef is typically used to remove dead weak references from
the container they are stored in, such as a weak dictionary. 2

5.31 Lost threads
If a thread is going to be dead, i.e. it is not running and the garbage collector
determines that any objects which could wake it up are unreachable, and if
it responds to signals, it is kept alive and a ThreadKicked signal is sent to it.

Rationale: Such thread may hold resources which are freed by the continuation of the
thread execution. 2

If several threads are going to be dead at the same time, they might
be kicked together, even if kicking only some of them would make others
reachable.

75

If no threads are running or waiting for an external event, and the
thread receiving system signals (see section 6.8 on page 90) is not waiting on
SleepForever or receive, a garbage collection is forced.

Note: In other words, for the purposes of detection of lost threads, merely having
signals unblocked is not considered to be waiting for an external event, unless the thread
is waiting specifically for signals and for nothing else. 2

Note: A garbage collection might help by kicking some threads or triggering finaliza-
tion. 2

If garbage collection did not resolve the situation, the configuration is
considered a program error. In this case, if the thread receiving system
signals responds to signals, a Deadlock signal is sent to it, otherwise the
program terminates with a fatal error.

Rationale: This configuration is considered an error because it is likely not intended,
even though technically it is not a deadlock: a system signal can interrupt a thread waiting
in some other way. 2

5.32 Collections
The following kinds of objects are called collections:

• sequences of elements arranged in some order, with possible duplicates,
indexed with ints starting from 0

• sets of unique elements

• dictionaries mapping unique keys to values

Elements of dictionaries are pairs of a key and the corresponding value.
Collection types can have abstract supertypes, which provide default

methods of various generic functions:
type COLLECTION;
type SEQUENCE is:COLLECTION;
type FLAT_SEQUENCE is:SEQUENCE;
type SET is:COLLECTION;
type DICTIONARY is:COLLECTION;

Flat sequences are a subset of sequences for which it can be expected that
iteration by indexing with integers in the range of the size is efficient.

5.32.1 Iteration

Iterators are used to provide a sequence of elements, one by one. An iterator
maintains the state needed to determine the remaining elements.

76

When an iterator is applied to two arguments: ‘iter absent present’, it
enters ‘absent()’ if there are no more elements, or ‘present elem’ with the next
element, advancing the state past it. It is correct to call an iterator again
after it reports no more elements, and it should report no more elements each
time.

Iteration over a set or a dictionary provides elements in an arbitrary order,
unless a particular set or dictionary type specifies otherwise.

A parallel iterator provides elements of several sequences in parallel: it
enters ‘absent()’ if any sequence runs out, or enters ‘present elems...’ with
several elements corresponding to the sequences. An iterator is a special
case of a parallel iterator with a single sequence.

def Iterate [
() {?_absent present {present()}}
coll! {}
colls... {

let iters = Map colls Iterate;
?absent present {

loop iters present [
(it\its) cont {

it absent ?elem ⇒
again its ?elems... ⇒
cont elem elems...

}
[] cont {cont()}

]
}

}
];

‘Iterate colls...’ returns a new parallel iterator over the given collections.
let EmptyIterator = ?absent _present {absent()};
EmptyIterator is an iterator over an empty sequence.

5.32.2 Lists

The basic type of a finite sequence is LIST, with subtypes NIL for the empty
list, and CONS for a nonempty list consisting of the first element and a list
of the rest of elements. Lists are immutable. Despite dynamic typing the
rest of a list is always a list, which is enforced at the time of construction.
Lists are generally used when the number of elements is not known statically,
especially when they are in some sense homogeneous.

77

type LIST is:SEQUENCE final:True {
type CONS (private UnsafeCons) first rest {};
type NIL (private Nil);

};
Cons and nil constructors are private because they are available through

the ‘[elem∗]’ syntax, the ‘first \ rest’ syntax, and the ’\\’ function.
def ’\\’ [

(list→ofType LIST) {list}
x xs... list {UnsafeCons x (again xs... list)}

];
’\\’ is the generalization of the cons constructor: it prepends any number

of elements to the given list.
def List [

() {[]}
[] {[]}
coll {again coll []}
coll1! coll2 {}
coll rest... {List coll (List rest...)}

];
‘List colls....’ returns a list with elements of the concatenated colls.

method List list^LIST rest {[list... (List rest)...]};

method List coll^COLLECTION rest {
let iter = Iterate coll;
loop {

iter {List rest} ?elem ⇒
elem \ again()

}
};

method Is list1^LIST list2 {
loop list1 list2 [

(x\xs) (y\ys) {x %Is y & again xs ys}
[] [] {True}
_ _ {False}

]
};

78

method Hash list^LIST {
loop 0 list [

acc (elem\rest) {again (acc %CombineHash Hash elem) rest}
acc [] {acc}

]
};

method ’==’ list1^LIST list2^LIST {
loop list1 list2 [

(x\xs) (y\ys) {x == y & again xs ys}
[] [] {True}
_ _ {False}

]
};

method ’<’ list1^LIST list2^LIST {
loop list1 list2 [

(x\xs) (y\ys) {if (x ~= y) {x < y} {again xs ys}}
_ [] {False}
[] _ {True}

]
};

method ’<=’ list1^LIST list2^LIST {
loop list1 list2 [

(x\xs) (y\ys) {if (x ~= y) {x < y} {again xs ys}}
[] _ {True}
_ [] {False}

]
};

method Iterate list^LIST {· · ·};

5.32.3 Generators

A generator is a sequence defined by its iterator.
type GENERATOR is:SEQUENCE Generate (private newIter) {

extend newIter;
};

‘Generate newIter’ returns a generator which evaluates ‘newIter()’ to ob-
tain an iterator.

79

method Iterate gen^GENERATOR {gen()};

let EmptyGenerator = Generate {EmptyIterator};
EmptyGenerator is a generator of an empty sequence.

def Generator [
() {EmptyGenerator}
coll {

if (coll→HasType GENERATOR) {coll} ⇒
Generate {Iterate coll}

}
colls... {

Generate {
var collIter = colls;
var iter = EmptyIterator;
function ?absent present {

iter {
case collIter [

(coll\restColls) {
collIter = restColls;
iter = Iterate coll;
again absent present

}
_ {absent()}

]
} present

}
}

}
];

‘Generator colls....’ returns a generator with elements of the concatenated
colls.

method Is gen1^GENERATOR gen2 {gen1 %IsEqual gen2};

method Hash gen^GENERATOR {
gen→Fold 0 ?acc elem {acc %CombineHash Hash elem}

};

method ’==’ gen1^GENERATOR gen2^GENERATOR {IsEqual gen1 gen2 ’==’};

80

method ’<’ gen1^GENERATOR gen2^GENERATOR {
let iter1 = gen1();
let iter2 = gen2();
loop {

iter2 {False} ?elem2 ⇒
iter1 {True} ?elem1 ⇒
if (elem1 ~= elem2) {elem1 < elem2} ⇒
again()

}
};

method ’<=’ gen1^GENERATOR gen2^GENERATOR {
let iter1 = gen1();
let iter2 = gen2();
loop {

iter1 {True} ?elem1 ⇒
iter2 {False} ?elem2 ⇒
if (elem1 ~= elem2) {elem1 < elem2} ⇒
again()

}
};

def Collect body {
Generate {

var absent;
var present;
var cont = {

body {absent()} ?elem next {cont = next; present elem}
};
?(set absent) (set present) {cont()}

}
};

‘Collect body’ returns a generator which enters ‘body end give’ when it-
erated. This application should give elements by entering ‘give elem next’
for an element elem, where next is a nullary function which continues giving
elements, and finally it should enter ‘end()’.

Example: A generator which gives 3 elements:

let ABC = Collect ?end give {
give "A" ⇒
give "B" ⇒
give "C" end

81

};
2

5.32.4 First and last element

The concept of the first element is extended to dictionaries and sets to mean
the first element in the iteration order, i.e. an arbitrary element, unless a
particular set or dictionary type specifies otherwise.

def First coll! {};
By convention, ‘First coll’ returns the first element of coll.

method First seq^FLAT_SEQUENCE {
if (IsEmpty seq) {Fail EmptyCollection} ⇒
seq@0

};

method First coll^COLLECTION {
let iter = Iterate coll;
iter {Fail EmptyCollection} Identity

};

def Last seq! {};
By convention, ‘Last seq’ returns the last element of seq.

method Last seq^FLAT_SEQUENCE {
let (size→ofType INT) = Size seq;
if (size > 0) {seq@(size − 1)} ⇒
if (size == 0) {Fail EmptyCollection} ⇒
Fail (NegativeSize size)

};

method Last seq^SEQUENCE {
let iter = Iterate seq;
iter {Fail EmptyCollection} (function ?last {iter {last} again})

};

def GetFirst [
coll absent {again coll absent Identity}
coll! absent present {}

];
By convention, ‘GetFirst coll absent present’ enters ‘present elem’ with

elem being the first element of coll, or enters ‘absent()’ if coll is empty.

82

method GetFirst seq^FLAT_SEQUENCE absent present {
if (IsEmpty seq) {absent()} {present seq@0}

};

method GetFirst coll^COLLECTION absent present {
let iter = Iterate coll;
iter absent present

};

def GetLast [
seq absent {again seq absent Identity}
seq! absent present {}

];
By convention, ‘GetLast seq absent present’ enters ‘present elem’ with elem

being the last element of seq, or enters ‘absent()’ if seq is empty.
method GetLast seq^FLAT_SEQUENCE absent present {

let (size→ofType INT) = Size seq;
if (size > 0) {present seq@(size − 1)} ⇒
if (size == 0) {absent()} ⇒
Fail (NegativeSize size)

};

method GetLast seq^SEQUENCE absent present {
let iter = IterateBack seq;
iter absent present

};

def AddFirst seq! elem {};
By convention, ‘AddFirst seq elem’ returns a sequence like seq, with elem

added before the first element.
method AddFirst list^LIST elem {elem\list};

method AddFirst seq^SEQUENCE elem {AddPart seq 0 [elem]};

def AddLast seq! elem {};
By convention, ‘AddLast seq elem’ returns a sequence like seq, with elem

added after the last element.
method AddLast seq^SEQUENCE elem {AddPart seq [elem]};

def RemoveFirstGen coll! {};

83

By convention, ‘RemoveFirstGen coll’ returns a generator with elements
of coll except the first element.

method RemoveFirstGen seq^FLAT_SEQUENCE {PartGen seq 1};

method RemoveFirstGen coll^COLLECTION {
Generate {

let iter = Iterate coll;
iter {EmptyIterator} ?_ ⇒
iter

}
};

def RemoveLastGen seq! {};
By convention, ‘RemoveLastGen seq’ returns a generator with elements of

seq except the last element.
method RemoveLastGen seq^FLAT_SEQUENCE {PartGen seq 0 (Size seq − 1)};

method RemoveLastGen seq^SEQUENCE {
Generate {

let iter = Iterate seq;
iter {EmptyIterator} ?(var elem) ⇒
?absent present {

iter absent ?next ⇒
let prev = elem;
elem = next;
present prev

}
}

};

def RemoveFirst coll! {};
By convention, ‘RemoveFirst coll’ returns a collection like coll, with the

first element removed.
method RemoveFirst list^CONS {list.rest};
method RemoveFirst list^NIL {list};

method RemoveFirst seq^FLAT_SEQUENCE {Part seq 1};

method RemoveFirst seq^SEQUENCE {RemoveFirstGen seq→Like seq};

84

method RemoveFirst set^SET {GetFirst set {set} (Remove set _)};

method RemoveFirst dict^DICTIONARY {
GetFirst dict {dict} ?(key, _) {Remove dict key}

};

def RemoveLast seq! {};
By convention, ‘RemoveLast seq’ returns a sequence like seq, with the last

element removed.
method RemoveLast seq^FLAT_SEQUENCE {Part seq 0 (Size seq − 1)};

method RemoveLast seq^SEQUENCE {RemoveLastGen seq→Like seq};

def DoAddFirst seq! elem {};
By convention, ‘DoAddFirst seq elem’ adds elem before the first element

of seq.
method DoAddFirst seq^SEQUENCE elem {

DoAddPart seq 0 [elem]
};

def DoAddLast seq! elem {};
By convention, ‘DoAddLast seq elem’ adds elem after the last element of

seq.
method DoAddLast seq^SEQUENCE elem {

DoAddPart seq [elem]
};

def DoRemoveFirst coll! {};
By convention, ‘DoRemoveFirst coll’ removes the first element of coll, or

does nothing if it was already empty.
method DoRemoveFirst seq^SEQUENCE {

DoRemovePart seq 0 1
};

method DoRemoveFirst set^SET {
GetFirst set {} (DoRemove set _)

};

85

method DoRemoveFirst dict^DICTIONARY {
GetFirst dict {} ?(key, _) {DoRemove dict key}

};

def DoRemoveLast seq! {};
By convention, ‘DoRemoveLast seq’ removes the last element of seq, or

does nothing if it was already empty.
method DoRemoveLast seq^SEQUENCE {

DoRemovePart seq (Size seq − 1)
};

def DoCutFirst coll! {};
By convention, ‘DoCutFirst coll’ removes and returns the first element of

coll, or fails with EMPTY_COLLECTION if it was already empty.
method DoCutFirst seq^SEQUENCE {

let elem = First seq;
DoRemoveFirst seq;
elem

};

method DoCutFirst set^SET {
let elem = First set;
DoRemove set elem;
elem

};

method DoCutFirst dict^DICTIONARY {
let (elem & (key, _)) = First dict;
DoRemove dict key;
elem

};

def DoCutLast seq! {};
By convention, ‘DoCutLast seq’ removes and returns the last element of

seq, or fails with EMPTY_COLLECTION if it was already empty.
method DoCutLast seq^SEQUENCE {

let elem = Last seq;
DoRemoveLast seq;
elem

};

86

def TryCutFirst [
coll absent {again coll absent Identity}
coll! absent present {}

];
By convention, ‘TryCutFirst coll absent present’ removes the first element

of coll and enters ‘present elem’ with elem being that element, or enters
‘absent()’ if coll was already empty.

method TryCutFirst coll^COLLECTION absent present {
GetFirst coll absent ?value ⇒
DoRemoveFirst coll;
present value

};

def TryCutLast [
seq absent {again seq absent Identity}
seq! absent present {}

];
By convention, ‘TryCutLast seq absent present’ removes the last element of

coll and enters ‘present elem’ with elem being that element, or enters ‘absent()’
if coll was already empty.

method TryCutLast seq^SEQUENCE absent present {
GetLast seq absent ?value ⇒
DoRemoveLast seq;
present value

};

5.32.5 Strings

A value of the STRING type represents a piece of text, expressed with a
sequence of Unicode code points (with codes between U+0000 and U+10FFFF).
An element of a string is called a character, but it has no separate type:
characters are represented with strings of length 1. Strings are immutable.

TODO

5.33 Showing data as strings
TODO

87

5.34 I/O streams
TODO

5.35 Serialization
TODO

6 Threads
Multithreading facilities are exported by the Threads module.

Functions with names beginning with Can are designed to be used with
event queues: see section 6.12 on page 92.

6.1 Exceptions related to threads

subtypes PROGRAM_ERROR {

type NO_CONDITION_PREDICATE NoConditionPredicate;
An attempt to Wait without specifying a predicate on a condition which

does not have an associated predicate either.
};

6.2 Starting threads

type THREAD · · ·;

def ThreadBlockSignals body {· · ·};
def Thread body {
ThreadBlockSignals {UnblockSignals body}

};
Threads are represented by handles of the THREAD type. Thread creates

a new thread executing ‘body()’ with signals initially unblocked, and returns
its handle. ThreadBlockSignals differs from Thread by starting the thread
with signals blocked once.

The main thread is the initial thread created to run the program.
ref CurrentThread = {· · ·};
CurrentThread is the handle of the calling thread.

88

6.3 Conditions

type CONDITION · · ·;
def Condition [

mutex {again mutex {Fail NoConditionPredicate}}
mutex pred {· · ·}

];

def Wait [
condition {again condition (· · ·)}
condition pred {· · ·}

];
def Notify condition {· · ·};
def Notify1 condition {· · ·};

A condition is associated with a mutex and a predicate.
Wait must be called when the current thread has locked the mutex asso-

ciated with condition, otherwise it fails with LockNotLocked. Wait uses the
specified pred, or the predicate associated with condition if none was given.

Wait checks whether the predicate is true. While the predicate is false,
Wait unlocks the mutex, waits until condition is notified or until a batch of
signals is processed or until a spurious wakeup, relocks the mutex, and checks
the predicate again. Waiting for notification is a signal handling point, while
relocking behaves with respect to signals like in Unlock. A spurious wakeup
is allowed to happen for no apparent reason.

Notify wakes up all threads waiting on condition. Notify1 wakes up some
thread waiting on condition, if there is any.

6.4 Waiting for threads

def WaitForThread [
thread {again thread Fail Identity}
thread failed {again thread failed Identity}
thread failed finished {· · ·}

];
WaitForThread suspends the current thread until the given thread com-

pletes. This is a signal handling point.
When thread has finished, ‘finished value’ is entered with the value of the

thread body, ‘failed exn’ is entered with the exception it failed with.

89

6.5 Yielding the processor

def Yield() {· · ·};
Yield is a hint that allowing other threads to run now is a good idea for

performance.

6.6 Sleeping forever

def SleepForever() {· · ·};
SleepForever is the same as waiting for a condition with a predicate which

is always false, except that when the thread which receives system signals
is sleeping forever and no other thread can run, this does not result in a
Deadlock signal.

6.7 Sending signals

def SignalThread thread signal {· · ·};
def CancelThread thread {SignalThread thread ThreadExit};
SignalThread sends the given signal to the given thread. It returns im-

mediately, even if the thread has signals blocked. If the thread has already
finished, the signal is lost.

6.8 System signals
System signals are signals sent from outside of the program or by the internal
language mechanisms.

ref SystemSignalHandler = · · ·;
One of the threads is designated to receive system signals. Initially

this is the main thread. The handle of this thread can be obtained by
SystemSignalHandler or changed by ‘SystemSignalHandler = thread’.

If the thread receiving system signals completes, or a thread which has
completed is designated as the thread receiving system signals, the main
thread becomes the thread receiving system signals.

System signals include values of type SYSTEM_SIGNAL, which reflect
signals sent between processes by the operating system.

90

OutOfMemory might be sent if the garbage collector determines that the
program might soon run out of memory. Running out of memory is a fatal
error.

Note: OutOfMemory gives a chance for the program to be informed that it should
reduce its memory consumption, to reduce the probability of a fatal out of memory error.
Since it is impossible to force a program to use less memory, and since it is unspecified
how much memory is needed by various language constructs, including those which might
be used when handling this signal, it does not prevent a fatal error. This signal is not
even guaranteed to be delivered before running out of memory. 2

6.9 Action signals

type ACTION_SIGNAL ActionSignal (var action);

method Close signal^ACTION_SIGNAL {
signal.action = {}

};

method DefaultSignalHandler signal^ACTION_SIGNAL {
signal.action()

};

6.10 Boxes
A box is a thread-aware container for an optional value.

type BOX Box [
() {· · ·}
(private value) {· · ·}

];
Box() returns a new empty box, and Box value returns a new box con-

taining value.
def Put (box→ofType BOX) value {· · ·};
Put box value puts value into box, or waits until another thread takes the

value if the box is already full.
def Take (box→ofType BOX) {· · ·};
Take box takes and returns the value from box, leaving the box empty, or

waits until another thread puts a value if the box is already empty.

91

def CanPut (box→ofType BOX) {· · ·};
CanPut box returns when Put box Null would return, but without chang-

ing the contents of box.
def CanTake (box→ofType BOX) {· · ·};
CanTake box returns when Take box would return, but without changing

the contents of box.

6.11 Queues
A queue is a thread-aware unbounded buffer.

type QUEUE Queue() {· · ·};
Queue() returns a new empty queue.

def PutLast (queue→ofType QUEUE) elem {· · ·};
PutLast queue elem adds elem as the last element of queue.

def TakeFirst (queue→ofType QUEUE) {· · ·};
TakeFirst queue takes and returns the first element of queue, removing it

from the queue, or waits until another thread puts an element if the queue
is already empty.

def CanTakeFirst (queue→ofType QUEUE) {· · ·};
CanTakeFirst queue returns when TakeFirst queue would return, but with-

out changing the contents of queue.

6.12 Event queues
An event queue allows to wait for several events concurrently.

type EVENT_QUEUE EventQueue() {· · ·};
EventQueue() returns a new empty event queue.

type EVENT · · ·;

def RegisterEvent (queue→ofType EVENT_QUEUE) action {· · ·};
RegisterEvent queue action starts executing ‘action()’ in the background,

and registers the thread executing it in queue. The action should wait for
some event and return a value which identifies the event.

RegisterEvent returns an event object which can be used to unregister this
event and cancel its action prematurely.

92

type READY_EVENT is:SPECIAL_RESULT ReadyEvent commit rollback;
def EventReady [

commit {again commit Ignore}
commit rollback {Fail (ReadyEvent commit rollback)}

];
If consuming an event has an observable effect, the function representing

the event should only wait until the event is ready, without consuming it,
and then apply EventReady to a nullary function which consumes the event
and returns its value. This function will be called when this event is chosen
by TakeEvent.

type NOT_READY_EVENT is:SPECIAL_RESULT NotReadyEvent continue;
def EventNotReady continue {Fail (NotReadyEvent continue)};

It might happen that the function being the argument of EventReady
determines that the event is no longer ready this time (e.g. some other process
has just grabbed the item from a shared queue). In this case this function
may apply the special function EventNotReady to a nullary function which
tells how to continue waiting, which lets TakeEvent start looking for another
event.

method Close event^EVENT {· · ·};
Close unregisters an event and cancel its action.

def TakeEvent (queue→ofType EVENT_QUEUE) {· · ·};
TakeEvent waits until some registered action from the queue is ready, and

returns its result. A given action fires only once.
def CanTakeEvent (queue→ofType EVENT_QUEUE) {· · ·};
CanTakeEvent queue returns when TakeEvent queue would return, but

without changing the contents of queue.
method Close queue^EVENT_QUEUE {· · ·};
Close cancels all registered actions.

6.13 Finalizers
A finalizer is an action to be executed some time after the given object dies,
i.e. ceases to be alive.

The set of alive objects is the smallest set which includes global references,
alive threads, and with the following property: if an object belongs to the
set, then all references contained in the object belong to the set too.

93

An alive thread is a thread which is strongly alive or responds to signals. A
strongly alive thread is a thread which is either an alive object, or is running,
or is waiting for an event outside of the program (such as I/O, timeout, or a
system signal).

A thread is considered to contain alive local references of active scopes
of the code executed by the thread. If a local reference will be accessed, it
is alive; if it will not be accessed, but it belongs to an active scope, it is
unspecified whether it is alive.

def Finalizer key close {· · ·};
Finalizer establishes the following association: some time after the key

object dies, ‘close()’ will be executed in a finalization thread created auto-
matically to run finalizers, with signals blocked. If close fails, any exception
is ignored.

type FINALIZER · · ·;
method Close finalizer^FINALIZER {· · ·};
Finalizer returns a control object of the FINALIZER type which can be used

to trigger finalization explicitly. Its Close method deactivates the association
and executes ‘close()’ immediately, with signals blocked, unless it has already
been executed (either automatically or explicitly), in which case Close does
nothing. If close fails, the exception is propagated.

If the closing action is being executed by some other thread at the time
Close is used, Close waits until the closing action completes. If it is already
being executed by the same thread, Close fails with RecursiveLock.

The key object keeps close alive. The close function should not refer to
key, otherwise key would never die. The lifetime of the finalizer object has
no influence on the association.

def Touch [
_ {}
result _ {result}

];
Touch does nothing, but ensures that the object pointed to by the last

argument of Touch is alive at the given point of the program.
Rationale: This is necessary in the following scenario:

def Operation obj {
RawOperation obj.raw
→Touch obj

};
if obj has a finalizer which makes obj.raw invalid, to ensure that obj is not finalized during
RawOperation. 2

94

6.14 Kicking weakly alive threads
TODO

6.15 Explicit garbage collection

def GarbageCollect() {· · ·};
def MaybeGarbageCollect() {· · ·};
def WantGarbageCollect() {· · ·};
GarbageCollect is a hint that performing garbage collection now, i.e. deter-

mining which objects are unreachable and freeing their resources, is a good
idea, as this could avoid garbage collection pauses later or reduce memory
consumption. Garbage collection may take some time.

MaybeGarbageCollect is a hint that performing garbage collection or a par-
tial garbage collection now is a good idea if enough garbage can be estimated
to have been accumulated since last garbage collection. MaybeGarbageCollect
doesnt bother to perform a full garbage collection each time if it is called too
often.

WantGarbageCollect tests if MaybeGarbageCollect would choose to perform
garbage collection now.

6.16 Exiting a program with several threads
The Threads module installs an AtExit handler which sets
SystemSignalHandler to the main thread, cancels all other threads, waits for
them to complete, performs garbage collection, and while there exist some
other threads (they might have been created by garbage collection), cancels
them, waits for them to complete, and performs garbage collection. Waiting
for all other threads to complete is done in synchronous mode with signals
unblocked.

6.17 Running code with a time limit
TODO

7 Calendar
TODO

95

References
[BCH+96] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith

Playford, and P. Tucker Withington. A monotonic superclass lin-
earization for Dylan. In Conference on Object-Oriented Program-
ming Systems Languages and Applications, pages 69–82, 1996.

96

Index
An italic page number means a less
important reference.

! (pattern), 27
" (lexical), 11
(lexical), 11
% (syntax), 17
& (expression), 21
& (pattern), 25
' (lexical), 11
() (expression), 18
(· · ·) (syntax), 14
* (expression), 20
’*’ (function), 20, 44

for FLOAT, 60
for INF, 56
for INT, 44
for INTEGER, 49
for NEG_INF, 56
for RATIO, 52
for RATIONAL, 53
for REAL, 62

’+’ (TIME), 70
+ (expression), 20
’+’ (function), 20, 43

for FLOAT, 60
for INF, 55
for INT, 43
for INTEGER, 49
for NEG_INF, 55
for RATIO, 51
for RATIONAL, 53
for REAL, 62

, (expression), 20
’,’ (function), 20, 63
, (pattern), 25
’−’ (TIME), 70
− (expression), 20

’−’ (function), 20, 43
for FLOAT, 60
for INF, 55
for INT, 43
for INTEGER, 49
for NEG_INF, 55
for RATIO, 51, 52
for RATIONAL, 53
for REAL, 62, 63

→ (syntax), 17
−> (syntax), 14
. (lexical), 11
. (syntax), 17
... (expression), 18
... (pattern), 24
/ (expression), 20
’/’ (function), 20, 50

for FLOAT, 60, 61
for INF, 58
for INT, 50
for INTEGER, 50
for NEG_INF, 58, 61
for RATIO, 52
for RATIONAL, 53
for REAL, 62, 63

/*· · ·*/ (lexical), 12
// (lexical), 12
: (syntax), 17
; (expression), 19
’<’ (TIME), 69
< (expression), 20
’<’ (function), 20, 33

for FLOAT, 60
for GENERATOR, 80
for INF, 55
for INT, 43
for INTEGER, 49
for LIST, 79

97

for NEG_INF, 55
for OBJECT_ID, 74
for PAIR, 63
for RATIO, 51
for REAL, 51

’<=’ (TIME), 69
<= (expression), 20
’<=’ (function), 20, 33

for FLOAT, 60
for GENERATOR, 81
for INF, 55
for INT, 43
for INTEGER, 49
for LIST, 79
for NEG_INF, 55
for OBJECT_ID, 74
for PAIR, 63
for RATIO, 51
for REAL, 51

= (definition), 26
= (expression), 14, 18
’==’ (TIME), 69
== (expression), 20
’==’ (function), 20, 33

for FLOAT, 60
for GENERATOR, 80
for INF, 54
for INT, 43
for INTEGER, 49
for LIST, 79
for NEG_INF, 54
for OBJECT_ID, 74
for PAIR, 63
for RATIO, 51
for REAL, 51

⇒ (syntax), 17
=> (syntax), 14
> (expression), 20
’>’ (function), 20, 33
>= (expression), 20
’>=’ (function), 20, 33

? (expression), 19
@ (expression), 20
’@’ (function), 20
[· · ·] (expression), 19
[· · ·] (pattern), 25
\ (expression), 20
\ (lexical), 13
’\\’ (function), 20, 78
^ (pattern), 28
_ (expression), 18, 21
_ (pattern), 24
{· · ·} (syntax), 17
| (expression), 21
| (pattern), 26
~ (expression), 18, 20
’~’ (function), 20, 32
~= (expression), 20
’~=’ (function), 20, 33
0b (lexical), 11
0o (lexical), 11
0x (lexical), 11

Abs, 43
for FLOAT, 60
for REAL, 43

AbsoluteTime, 70
for REAL, 70
for TIME, 70

abstract type, 5, 30
ACTION_SIGNAL, 91
ActionSignal, 91
AddFirst, 83

for LIST, 83
for SEQUENCE, 83

AddLast, 83
for SEQUENCE, 83

again, 19, 22, 27, 29
alive object, 93
AllSupertypes, 65
Apply, 35
ApplyGenericCase, 67

98

arithmetic equality, 34
AtExit, 42
AttachDynamic, 66
AtUnhandledException, 41

BitAnd, 47
for INT, 47
for INTEGER, 49

BitAndNot, 47
for INTEGER, 47

BitNot, 47
for INT, 47
for INTEGER, 49

BitOr, 47
for INT, 47
for INTEGER, 49

BitShift, 48
for INT, 48
for INTEGER, 49

BitXor, 48
for INT, 48
for INTEGER, 49

BlockAsyncSignals, 71
BlockSignals, 71
BlockSyncSignals, 71
BOOL, 32
BOX, 91
Box, 91

CancelThread, 90
CanPut, 91
CanTake, 92
CanTakeEvent, 93
CanTakeFirst, 92
case (expression), 21
Ceiling, 46

for FLOAT, 62
for INF, 57
for INTEGER, 46
for NEG_INF, 57
for REAL, 46

Ceuling
for RATIO, 53

Change, 68
for RECORD, 69

character, 87
ClearBit, 48

for INT, 48
for INTEGER, 49

Close, 34
for ACTION_SIGNAL, 91
for EVENT, 93
for EVENT_QUEUE, 93
for FINALIZER, 94
for REGISTERED_KEY, 35

Collect, 81
COLLECTION, 76
collection, 76
CombineHash, 33
COMPLEX, 42
concrete type, 5
CONDITION, 89
Condition, 89
CONS, 77, 77
constant, 8, 24, 26
constructor, 6, 31
convention, 5
CountBits, 48

for INT, 48
for INTEGER, 49

CurrentThread, 88

DEAD_WEAK_REFS, 74
DeadWeakRefs, 74
DeclareSupertype, 65
DecodeFloat, 59

for FLOAT, 59
def (definition), 27, 28
DefaultReal, 59
DefaultSignalHandler, 71

for ACTION_SIGNAL, 91
DefineMethod, 67

99

DefineMethodSuper, 67
definition, 7, 26
Denominator, 50

for INT, 50
for INTEGER, 50
for RATIO, 50
for RATIONAL, 50

DICTIONARY, 76
dictionary, 76
Div, 44

for FLOAT, 62
for INF, 56, 62
for INT, 44
for INTEGER, 49
for NEG_INF, 56, 62
for RATIO, 52
for RATIONAL, 53
for REAL, 62

DivMod, 45
for FLOAT, 62
for INF, 57
for INT, 45
for INTEGER, 49
for NEG_INF, 57
for RATIO, 52
for RATIONAL, 53
for REAL, 62

DoAddFirst, 85
for SEQUENCE, 85

DoAddLast, 85
for SEQUENCE, 85

DoCutFirst, 86
for DICTIONARY, 86
for SEQUENCE, 86
for SET, 86

DoCutLast, 86
for SEQUENCE, 86

DoRemoveFirst, 85
for DICTIONARY, 85
for SEQUENCE, 85
for SET, 85

DoRemoveLast, 86
for SEQUENCE, 86

DYNAMIC, 66
dynamic (definition), 26, 27
dynamic (pattern), 24
dynamic environment, 8
dynamic variable, 8, 24, 26, 27, 66

EachDeadWeakRef, 75
EmptyGenerator, 80
EmptyIterator, 77
Ensure, 72
enter, 8
equality

arithmetic, 34
physical, 6, 32
strict, 32

EVENT, 92
EVENT_QUEUE, 92
EventNotReady, 93
EventQueue, 92
EventReady, 92
EXIT, 35
ExitProgram, 41
ExitProgramNow, 41
expression, 7, 14
EXTERNAL_ERROR, 35

Fail, 35
FALSE, 32
False, 32, 32
final type, 5
final:, 29
FINALIZER, 94
Finalizer, 94
finalizer, 93
FindBit, 49

for INT, 49
for INTEGER, 49

First, 82
for COLLECTION, 82

100

for FLAT_SEQUENCE, 82
FLAT_SEQUENCE, 76
FLOAT, 58
Float, 59

for FLOAT, 59
for INF, 59
for INT, 59
for INTEGER, 59
for NEG_INF, 59
for NULL, 59
for RATIO, 59
for RATIONAL, 59

Floor, 45
for FLOAT, 62
for INF, 57
for INTEGER, 46
for NEG_INF, 57
for RATIO, 53
for REAL, 45

FORWARD, 67
forward (definition), 27
forward variable, 27, 67
FUNCTION, 67
function, 8, 19, 27, 67
function (expression), 19
FunctionName, 67

garbage collection, 76, 95
GarbageCollect, 95
GCD, 47

for RATIONAL, 47
Generate, 79
GENERATOR, 79
Generator, 80
generic function, 9
GenericCase, 67
GetFirst, 82

for COLLECTION, 83
for FLAT_SEQUENCE, 82

GetLast, 83
for FLAT_SEQUENCE, 83

for SEQUENCE, 83

handle (expression), 23
handled:, 23
Hash, 33

for FLOAT, 60
for GENERATOR, 80
for INT, 43
for LIST, 78
for OBJECT_ID, 74
for RATIO, 51
for RECORD, 68
for SINGLETON, 68
for SYMBOL, 64
for TIME, 69
for TYPE, 65

HasType, 65
hint, 5

Identity, 35
identity, 6, 32, 74
if (expression), 20, 21
if (pattern), 25
Ignore, 35
immutable object, 6
INT, 42
Int, 42

for FLOAT, 59
for INF, 55
for INT, 42
for NEG_INF, 55
for RATIO, 50
for RATIONAL, 50
for REAL, 59

INTEGER, 42
Is, 32

for FLOAT, 60
for GENERATOR, 80
for INT, 43
for LIST, 78
for NAMED_FUNCTION, 67

101

for OBJECT_ID, 74
for RATIO, 51
for RECORD, 68
for SYMBOL, 64
for TIME, 69
for TYPE, 65
for UNNAMED_FUNCTION, 67

is:, 29
IsBetween, 34
IsDivisible, 45

for INF, 57
for NEG_INF, 57
for REAL, 45

IsEven, 45
for INTEGER, 45

IsFinite, 58
for FLOAT, 58
for INF, 58
for INT, 58
for NEG_INF, 58
for RATIO, 58

IsInfinite, 58
for FLOAT, 58
for INF, 58
for INT, 58
for NEG_INF, 58
for RATIO, 58

IsInRange, 34
IsNaN, 58

for FLOAT, 58
for INF, 58
for INT, 58
for NEG_INF, 58
for RATIO, 58

IsOdd, 45
IsSame, 32
IsSubtype, 65
Iterate, 77
Iterate

for GENERATOR, 79
for LIST, 79

iterator, 76

Last, 82
for FLAT_SEQUENCE, 82
for SEQUENCE, 82

LAZY, 67
lazy (definition), 27
lazy variable, 27, 67
let (definition), 26
LIST, 77, 77
List, 78

for COLLECTION, 78
for LIST, 78

local (expression), 22
Lock, 73
lock, 73
LockRead, 73
LockUpdate, 73
LockWriteUpdating, 73
loop (expression), 21, 22

match (pattern), 25
Max, 34

for FLOAT, 60
for INF, 55
for INT, 43
for INTEGER, 49
for NEG_INF, 55
for RATIO, 51
for RATIONAL, 53
for REAL, 62

MaxHash, 33
maybe (pattern), 25
MaybeGarbageCollect, 95
method, 28
method (definition), 28, 29
Min, 34

for FLOAT, 60
for INF, 55
for INT, 43
for INTEGER, 49

102

for NEG_INF, 55
for RATIO, 51
for RATIONAL, 53
for REAL, 62

Mod, 44
for FLOAT, 62
for INF, 57
for INT, 44
for INTEGER, 49
for NEG_INF, 57
for RATIO, 52, 53
for RATIONAL, 53
for REAL, 62

mutable object, 6
mutable variable, 8, 24, 27, 66
MUTEX, 73
Mutex, 73

NAMED_FUNCTION, 27, 67
NamedFunction, 67
NewDynamic, 66
NewForward, 67
NewType, 66
NIL, 77, 77
NO_CONDITION_PREDICATE, 88
NoConditionPredicate, 88
NOT_READY_EVENT, 93
Notify, 89
Notify1, 89
NotReadyEvent, 93
NULL, 32
Null, 32, 32
NUMBER, 42
Numerator, 50

for INT, 50
for INTEGER, 50
for RATIO, 50
for RATIONAL, 50

OBJECT, 5
object type, 7

OBJECT_ID, 74
ObjectId, 74
ofType (pattern), 25
OutOfMemory, 90

PAIR, 63
partial application, 18
pattern, 7, 24
physical equality, 6, 32
Prelude, 31
private (definition), 31
private (pattern), 24
PrivateSymbol, 64
PROGRAM_ERROR, 35
public (definition), 31
public (pattern), 24
Put, 91
PutLast, 92

QUEUE, 92
Queue, 92
Quot, 44

for FLOAT, 61
for INF, 56, 61
for INT, 44
for INTEGER, 49
for NEG_INF, 56, 61
for RATIO, 52
for RATIONAL, 53
for REAL, 62

QuotRem, 44
for FLOAT, 61
for INF, 56
for INT, 44
for INTEGER, 49
for NEG_INF, 56
for RATIO, 52
for RATIONAL, 53
for REAL, 62

RATIO, 49
Ratio, 49

103

for FLOAT, 59
for INF, 55
for INT, 49
for INTEGER, 49
for NEG_INF, 55
for RATIO, 49
for REAL, 59

RATIONAL, 42
Rationalize, 53
READY_EVENT, 92
ReadyEvent, 92
REAL, 42
RECORD, 30, 68
record type, 30
RecordConstructor, 30, 68
RecordFields, 30, 68
ref (definition), 27
ref (expression), 14, 18, 20
ref (pattern), 24
reference, 8, 24, 26
Register, 35

for REGISTERED_LIST, 35
REGISTERED_KEY, 35
REGISTERED_LIST, 35
RegisteredList, 35
RegisterEvent, 92
Rem, 44

for FLOAT, 61
for INF, 56
for INT, 44
for INTEGER, 49
for NEG_INF, 56
for RATIO, 52
for RATIONAL, 53
for REAL, 62

RemoveFirst, 84
for DICTIONARY, 85
for FLAT_SEQUENCE, 84
for LIST, 84
for SEQUENCE, 84
for SET, 84

RemoveFirstGen, 83
for COLLECTION, 84

RemoveFirstgen
for FLAT_SEQUENCE, 84

RemoveLast, 85
for FLAT_SEQUENCE, 85
for SEQUENCE, 85

RemoveLastGen, 84
for FLAT_SEQUENCE, 84
for SEQUENCE, 84

RESOURCE_ERROR, 35
Round, 46

for FLOAT, 62
for INF, 57
for INTEGER, 46
for NEG_INF, 57
for REAL, 46

ScaleReal, 59
for FLOAT, 59
for REAL, 59

SEQUENCE, 76
sequence, 76
SET, 76
set, 76
SetBit, 48

for INT, 48
for INTEGER, 49

Signal, 23, 71
signal, 70, 75, 90

blocking, 23, 42, 67, 71, 71–73,
88, 94

handling, 70, 71
system, 76, 90

SignalThread, 90
SignBit, 58

for FLOAT, 58
for INF, 58
for INT, 58
for NEG_INF, 58
for RATIO, 58

104

Signum, 43
for FLOAT, 60
for REAL, 43

SINGLETON, 30, 68
singleton type, 6, 30, 31
SingletonName, 30, 68
SizeInBits, 48

for INT, 48
for INTEGER, 49

SleepForever, 90
SOURCE_LOC, 41
SourceLoc, 41
SPECIAL_RESULT, 35
Sqr, 44

for COMPLEX, 44
StackTrace, 42
statement, 7, 26
strict equality, 32
STRING, 87
String

for SYMBOL, 64
STRUCT, 24
struct (expression), 24
subtype, 5
subtypes (definition), 30
super, 23, 29
supertype, 5, 6, 29, 30
SYMBOL, 64
Symbol, 64
SYSTEM_SIGNAL, 90
SystemSignalHandler, 90

tail-call, 8
Take, 91
TakeEvent, 93
TakeFirst, 92
TestBit, 48

for INT, 48
for INTEGER, 49

this, 24, 31
THREAD, 88

Thread, 88
thread, 7, 75, 88, 94
ThreadBlockSignals, 88
TicksPerSecond, 69
TIME, 69
Time, 70

for INT, 70
Touch, 94
TRUE, 32
True, 32, 32
Trunc, 46

for FLOAT, 62
for INF, 57
for INTEGER, 46
for NEG_INF, 57
for RATIO, 53
for REAL, 46

try (expression), 22
TryCutFirst, 87

for COLLECTION, 87
TryCutLast, 87

for SEQUENCE, 87
tuple, 63
TYPE, 64
Type, 65
type, 5, 65

abstract, 5, 30
concrete, 5
final, 5
object, 7
record, 30
singleton, 6, 30, 31
value, 7

type (definition), 30, 31

UnblockAsyncSignals, 71
UnblockSignals, 71
UnblockSyncSignals, 71
Unlock, 73
UnlockRead, 73
UnlockUpdate, 73

105

UnlockWriteUpdating, 73
UNNAMED_FUNCTION, 19, 67
UnnamedFunction, 67
Using, 71

value, 5
value type, 7
VAR, 66
var (definition), 27
var (pattern), 24
variable, 27

dynamic, 8, 24, 26, 27, 66
forward, 27, 67
lazy, 27, 67
mutable, 8, 24, 27, 66

Wait, 89
WaitForThread, 89
WantGarbageCollect, 95
WEAK_REF, 74
WeakPair, 74
WeakRef, 74
where (pattern), 25
with (pattern), 25

Yield, 90

106

	Overview and Terminology
	Execution
	Types
	Supertype ordering
	Mutability
	Object identity
	Threads
	Syntax basics
	References
	Functions
	Scoping
	Object fields
	Syntax

	Lexical Syntax
	Abstract Grammar
	Concrete Grammar
	Expressions
	References
	Application
	Literals
	Lists
	Local definitions
	Unnamed functions
	Operators which denote function application
	Conditionals
	Case selection
	Loop
	Local rebinding
	Exception catching
	Signal handling
	Unnamed structures

	Patterns
	Pattern lists
	References
	Visibility
	Predicates
	Sequencing several matches
	Checking types
	Extracting components of compound values
	Alternative matches

	Definitions
	Assignment
	Statements
	References
	Named functions
	Methods
	Types
	Visibility

	Prelude
	Null
	Booleans
	Equality
	Hashing
	Ordering
	Freeing resources
	Simple functions
	Registered lists
	Exceptions
	Program errors
	External errors
	Resource errors
	Exits

	Exiting the program
	Numbers
	Abstract types
	Integers
	Rationals
	Infinities
	Floats

	Characters
	Pairs
	Symbols
	Types
	Mutable Variables
	Dynamic variables
	Lazy variables
	Forward variables
	Functions
	Singletons
	Records
	Modules
	Keywords
	Time
	Signals
	Bracketing resource usage
	Mutexes
	Materialized object identity
	Weak references
	Lost threads
	Collections
	Iteration
	Lists
	Generators
	First and last element
	Strings

	Showing data as strings
	I/O streams
	Serialization

	Threads
	Exceptions related to threads
	Starting threads
	Conditions
	Waiting for threads
	Yielding the processor
	Sleeping forever
	Sending signals
	System signals
	Action signals
	Boxes
	Queues
	Event queues
	Finalizers
	Kicking weakly alive threads
	Explicit garbage collection
	Exiting a program with several threads
	Running code with a time limit

	Calendar

